2013, Número S1
<< Anterior Siguiente >>
Rev Mex Anest 2013; 36 (S1)
Efectos neuroquímicos de los agentes anestésicos: implicaciones para la toxicidad, la adicción y la disfunción congnitiva
Marsh HM
Idioma: Ingles.
Referencias bibliográficas: 20
Paginas: 36-38
Archivo PDF: 92.84 Kb.
FRAGMENTO
Sin resumen
REFERENCIAS (EN ESTE ARTÍCULO)
Franks NP, Lieb WR. Molecular mechanisms of general anesthesia. Nature. 1982;300:487-93.
Campagna JA, Miller KW, Forman SA. Mechanisms of actions of inhaled anesthetics. N Engl J Med. 2003;348:2110-23.
Antognini JF, Carstens E. In vivo characterization of clinical anesthesia and its components. Br J Anaesth. 2002;89:156-66.
Smith DS, Britton C. New techniques, new opportunities, old problems. Anesthesiology. 1987;67:157-60.
Yan X, Firestone L. Use of nuclear magnetic resonance and electron paramagnetic resonance in anesthesia research. IN: Yaksh TL, et alii, eds. Anesthesia: Biologic Foundations. Philadelphia: Lippincott-Raven, 1997;23:375-97.
D’Esposito M, Deonell LY, Gazzaley A. Alterations in the BOLD FMRI signal with ageing and disease: A challenge for neuroimaging. Nature Review: Neuroscience. 2003;4:863-72.
Reference Dr. Greenwald’s NIH grant funded study – public domain.
Moore GJ, Galloway MP. Magnetic resonance spectroscopy: neurochemistry and treatment effects in affective disorders. Psychopharmacol Bull. 2002;36:5-23.
Shulman RG, Hyder Ford Rothman DL. Cerebral metabolism and consciousness. Comptes Rendu Biol. 2003;326:253-73.
McKelvey GM, Marsh HM, Pustavoitau A, Mitchell TR, Seraji-Bozorgzad N, Moore GJ, Galloway MP: Common Effects of Halothane and Isofluorane on the Neurochemical Profile Rat Brain: Studies with High-Resolution Magic Angle Spinning 1H Magnetic Resonance Spectroscopy (HR-MAS-1H-MRS) at 11.7T. Society for Neuroscience Annual Meeting, October 2004.
Griffiths R, Norman RI. Effects of anesthetics on uptake, synthesis and release of transmitters. Br J Anaesth. 1993;71:96-107.
Wu X-S, Sun J-Y, Evers AS, and others. Isoflurane inhibits transmitter release and the presynaptic action potential. Anesthesiology. 2004;100:663-70.
Angel A. Central Neuronal Pathways and the Process of Anesthesia. Br J Anaesth. 1993;71:148-63.
Tung A, Mendelson WB. Anesthesia and Sleep. Sleep Med Rev. 2004;8:213-25.
Alkire MT, Haier, RJ, Fallon JH. Toward a unified theory of narcosis: Brain imaging evidence for a thalamo-cortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Consciousness & Cognition. 2000;9:370-86.
Cariani P. Anesthesia, neural information processing and conscious awareness. Consciousness & Cognition. 2000;9:387-95.
Van Dort CJ, Baghdoyan HA, Lydic R. Neurochemical modulators of sleep and anesthetic states. Int Anes Clin. 2008;46:75-104.
Moore JT, Chen J, Han B, et al. Direct activation of sleep-promoting VLPO neurons by volatile anesthetics contributes to anesthesia hypnosis. Curr Biol. 2012;22:2008-16.
Kelz MB, Sun Y, Chen J, et al. An essential role for orexins in emergence from general anesthesia. PNAS. 2008;105:1309-14.
Sanders RD. Delirium, neurotransmission, and network connectivity: the search for a comprehensive pathogenic framework. Anesthesiology. 2013;118:494-96.