2013, Número 1
<< Anterior Siguiente >>
Rev Invest Clin 2013; 65 (1)
Alternativas de intervención terapéutica en cáncer usando vectores bacterianos vivos atenuados: Salmonella enterica como acarreador de moléculas heterólogas
Hernández-Luna MA, Luria-Pérez R, Huerta-Yépez S
Idioma: Español
Referencias bibliográficas: 61
Paginas: 65-73
Archivo PDF: 200.01 Kb.
RESUMEN
Salmonella enterica es una bacteria anaeróbica facultativa de
residencia intracelular, cuyo tropismo por las células presentadoras
de antígenos como células dendríticas y macrófagos,
ha permitido su empleo exitoso como vector bacteriano vivo
atenuado con fines vacunales. La capacidad de
Salmonella
enterica de sintetizar y de mostrar al sistema inmunológico
antígenos heterólogos provenientes de virus, parásitos y otras
especies bacterianas o antígenos asociados a tumores, ha mostrado
inducir una respuesta inmunológica celular, humoral y
de mucosas eficiente contra estas moléculas heterólogas. En
este proceso, la expresión o la liberación de estos antígenos
heterólogos de la superficie de
Salmonella enterica a través de
los sistemas de secreción tipo I, III y V representa un punto
clave para la estimulación adecuada de la respuesta inmunológica.
Trabajos recientes sugieren que
Salmonella enterica tiene
propiedades importantes para ser considerada como agente
terapéutico contra el cáncer. Los estudios pre-clínicos y clínicos
sobre los cuales se apoya esta premisa, demuestran que
posterior a la administración sistémica de
Salmonella enterica
migra y coloniza en mayor proporción a tumores sólidos y
metástasis en comparación al tejido normal. En esta revisión
se enumeran diferentes estrategias para la estimulación de la
respuesta inmunológica empleando a
Salmonella enterica
como un acarreador de moléculas heterólogas y hacemos un
énfasis en su utilidad como acarreador de moléculas profilácticas
y/o terapéuticas contra el cáncer.
REFERENCIAS (EN ESTE ARTÍCULO)
Kotton CN, Hohmann EL. Enteric pathogens as vaccine vectors for foreign antigen delivery. Infection and immunity 2004; 72: 5535-47.
Mittrucker HW, Kaufmann SH. Immune response to infection with Salmonella typhimurium in mice. J Leukoc Biol 2000: 67; 457-63.
Poirier TP, Kehoe MA, Beachey EH. Protective immunity evoked by oral administration of attenuated aroA Salmonella typhimurium expressing cloned streptococcal M protein. J Exp Med 1988; 168: 25-32.
Hess J, et al. Superior efficacy of secreted over somatic antigen display in recombinant Salmonella vaccine induced protection against listeriosis. Proceedings of the National Academy of Sciences of the United States of America 1996; 93: 1458-63.
Dalla Pozza T, Yan H, Meek D, Guzman CA, Walker MJ. Construction and characterisation of Salmonella typhimurium aroA simultaneously expressing the five pertussis toxin subunits. Vaccine 1998; 16: 522-9.
Xu C, et al. Construction of recombinant attenuated Salmonella typhimurium DNA vaccine expressing H pylori ureB and IL-2. World J Gastroenterol 2007; 13: 939-44.
Wang QL, et al. An attenuated Salmonella-vectored vaccine elicits protective immunity against Mycobacterium tuberculosis. Vaccine 2009; 27: 6712-22.
Tzschaschel BD, Guzman CA, Timmis KN, De Lorenzo V. An Escherichia coli hemolysin transport system-based vector for the export of polypeptides: export of Shiga-like toxin IIeB subunit by Salmonella typhimurium aroA. Nature biotechnology 1996; 14: 765-9.
Osorio M, et al. Anthrax protective antigen delivered by Salmonella enterica serovar Typhi Ty21a protects mice from a lethal anthrax spore challenge. Infection and immunity 2009; 77, 1475-82.
Russmann H, et al. Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science 1998; 281: 565-8.
Konjufca V, Wanda SY, Jenkins MC, Curtiss R 3rd. A recombinant attenuated Salmonella enterica serovar Typhimurium vaccine encoding Eimeria acervulina antigen offers protection against E. acervulina challenge. Infection and immunity 2006; 74, 6785-96.
Russmann H, et al. Protection against murine listeriosis by oral vaccination with recombinant Salmonella expressing hybrid Yersinia type III proteins. J Immunol 2001; 167, 357-65.
Chen LM, Briones G, Donis RO, Galan JE. Optimization of the delivery of heterologous proteins by the Salmonella enterica serovar Typhimurium type III secretion system for vaccine development. Infection and immunity 2006; 74: 5826-33.
Ruiz-Perez F, et al. Expression of the Plasmodium falciparum Immunodominant Epitope (NANP)4 on the Surface of Salmonella enterica Using the Autotransporter MisL. Infection and immunity 2002; 70: 3611-20.
Luria-Perez R, et al. A fusogenic peptide expressed on the surface of Salmonella enterica elicits CTL responses to a dengue virus epitope. Vaccine 2007; 25: 5071-85.
Pompa-Mera EN, et al. Trichinella spiralis: intranasal immunization with attenuated Salmonella enterica carrying a gp43 antigen- derived 30mer epitope elicits protection in BALB/c mice. Experimental parasitology 2011; 129: 393-401.
Moreno M, Kramer MG, Yim L, Chabalgoity JA. Salmonella as live trojan horse for vaccine development and cancer gene therapy. Current Gene Therapy 2010; 10: 56-76.
Holland IB. The extraordinary diversity of bacterial protein secretion mechanisms. Methods Mol Biol 2010; 619: 1-20.
Ruiz-Olvera P, et al. Display and release of the Plasmodium falciparum circumsporozoite protein using the autotransporter MisL of Salmonella enterica. Plasmid 2003; 50: 12-27.
Coley WB II. Contribution to the Knowledge of Sarcoma. Annals of Surgery 1891; 14: 199-220.
Pawelek JM, Low KB, Bermudes D. Bacteria as tumour-targeting vectors. The Lancet Oncology 2003; 4: 548-56.
Wei MQ, et al. Facultative or obligate anaerobic bacteria have the potential for multimodality therapy of solid tumours. Eur J Cancer 2007; 43: 490-6.
Kimura NT, Taniguchi S, Aoki K, Baba T. Selective localization and growth of Bifidobacterium bifidum in mouse tumors following intravenous administration. Cancer research 1980; 40: 2061-8.
Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci USA 2001; 98: 15155-60.
Pawelek JM, Low KB, Bermudes D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer research 1997; 57: 4537-44.
Ganai S, Arenas RB, Sauer JP, Bentley B, Forbes NS. In tumors Salmonella migrate away from vasculature toward the transition zone and induce apoptosis. Cancer Gene Ther 2011; 18: 457-66.
Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nature reviews. Cancer 2010; 10: 785-94.
Kasinskas RW, Forbes NS. Salmonella typhimurium specifically chemotax and proliferate in heterogeneous tumor tissue in vitro. Biotechnol Bioeng 2006; 94: 710-21.
Kasinskas RW, Forbes NS. Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis. Cancer research 2007; 67: 3201-09.
Stritzker J, et al. Enterobacterial tumor colonization in mice depends on bacterial metabolism and macrophages but is independent of chemotaxis and motility. International journal of medical microbiology: IJMM 2010; 300: 449-56.
Toley BJ, Forbes NS. Motility is critical for effective distribution and accumulation of bacteria in tumor tissue. Integrative biology: quantitative biosciences from nano to macro 2012; 4: 165-76.
Zhao M, et al. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci USA 2005; 102: 755-60.
Zhao M, et al. Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci USA 2007; 104: 10170-4.
Zhao M. et al. Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Research 2006: 66: 7647-52.
Hayashi K, et al. Systemic targeting of primary bone tumor and lung metastasis of high-grade osteosarcoma in nude mice with a tumor-selective strain of Salmonella typhimurium. Cell Cycle 2009; 8, 870-5.
Toso JF, et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 2002; 20: 142-52.
Fensterle J, et al. Cancer immunotherapy based on recombinant Salmonella enterica serovar Typhimurium aroA strains secreting prostate-specific antigen and cholera toxin subunit B. Cancer gene therapy 2008: 15: 85-93.
Panthel K, et al. Prophylactic anti-tumor immunity against a murine fibrosarcoma triggered by the Salmonella type III secretion system. Microbes and infection/Institut Pasteur 2006; 8: 2539-46.
Nishikawa H. et al. In vivo antigen delivery by a Salmonella typhimurium type III secretion system for therapeutic cancer vaccines. J Clin Invest 2006; 116: 1946-54.
Loeffler M, Le’Negrate G, Krajewska M, Reed JC. Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proc Natl Acad Sci USA 2007; 104: 12879-83.
Loeffler M, Le’Negrate G, Krajewska M, Reed JC. IL-18-producing Salmonella inhibit tumor growth. Cancer gene therapy 2008; 15: 787-94.
Loeffler M, Le’Negrate G, Krajewska M, Reed JC. Salmonella typhimurium engineered to produce CCL21 inhibit tumor growth. Cancer immunology, immunotherapy: CII 2009; 58: 769-75.
Loeffler M, Le’Negrate G, Krajewska M, Reed JC. Inhibition of tumor growth using salmonella expressing Fas ligand. J Natl Cancer Inst 2008; 100: 1113-6.
Sorenson BS, Banton KL, Frykman NL, Leonard AS, Saltzman DA. Attenuated Salmonella typhimurium with IL-2 gene reduces pulmonary metastases in murine osteosarcoma. Clinical orthopaedics and related research 2008; 466: 1285-91.
Sorenson BS, Banton KL, Frykman NL, Leonard AS, Saltzman DA. Attenuated Salmonella typhimurium with interleukin 2 gene prevents the establishment of pulmonary metastases in a model of osteosarcoma. J Pediatr Surg 2008; 43: 1153-8.
Agorio C, et al. Live attenuated Salmonella as a vector for oral cytokine gene therapy in melanoma. J Gene Med 2007; 9: 416-23.
Cao HD, et al. Attenuated Salmonella typhimurium carrying TRAIL and VP3 genes inhibits the growth of gastric cancer cells in vitro and in vivo. Tumori 2010; 96: 296-303.
Nemunaitis J, et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer gene therapy 2003; 10: 737-44.
Padmanabhan S, Amin T, Sampat B, Cook-Deegan R, Chandrasekharan S. Intellectual property, technology transfer and manufacture of low-cost HPV vaccines in India. Nature biotechnology 2010; 28: 671-8.
Stevenson M. Therapeutic potential of RNA interference. N Engl J Med 2004; 351: 1772-7.
Snead NM, Rossi JJ. RNA interference trigger variants: getting the most out of RNA for RNA interference-based therapeutics. Nucleic acid therapeutics 2012; 22; 139-46.
Bora RS, Gupta D, Mukkur TK, Saini KS. RNA interference therapeutics for cancer: Challenges and opportunities (Review). Molecular medicine reports 2012; 6: 9-15.
Darji A, et al. Oral somatic transgene vaccination using attenuated S. typhimurium. Cell 1997; 91, 765-75.
Weiss S, Chakraborty T. Transfer of eukaryotic expression plasmids to mammalian host cells by bacterial carriers. Current opinion in biotechnology 2001; 12: 467-72.
Lee CH, Wu CL, Shiau AL. Endostatin gene therapy delivered by Salmonella choleraesuis in murine tumor models. J Gene Med 2004; 6: 1382-93.
Lee CH, Wu CL, Shiau AL. Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model. Cancer gene therapy 2005; 12: 175-84.
Jiang Z, et al. Using attenuated Salmonella typhi as tumor targeting vector for MDR1 siRNA delivery. Cancer biology & therapy 2007; 6: 555-60.
Zhang L, et al. Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica serovar typhimurium carrying plasmid-based small interfering RNAs. Cancer research 2007; 67: 5859-64.
Yang N, Zhu X, Chen L, Li S, Ren D. Oral administration of attenuated S. typhimurium carrying shRNA-expressing vectors as a cancer therapeutic. Cancer biology & therapy 2008; 7: 145-51.
Guo H, et al. Targeting tumor gene by shRNA-expressing Salmonella- mediated RNAi. Gene therapy 2011; 18: 95-105.
Xiang S, Fruehauf J, Li CJ. Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nature biotechnology 2006; 24: 697-702.