2013, Número 3
<< Anterior Siguiente >>
Rev Fac Med UNAM 2013; 56 (3)
Desarrollo de los ritmos biológicos en el recién nacido Cátedra Especial “Dr. Ignacio Chávez”
Ángeles-Castellanos M, Vázquez RS, Palma M, Ubaldoa L, Cervantes G, Rojas-Granados A, Escobar C
Idioma: Español
Referencias bibliográficas: 36
Paginas: 26-35
Archivo PDF: 245.62 Kb.
RESUMEN
Los ritmos circadianos se generan de forma endógena con un período de aproximadamente 24 h. Estudios realizados durante la última década indican que el sistema circadiano se desarrolla antes del nacimiento y que el núcleo supraquiasmático, estructura que se considera el reloj circadiano del mamífero, está presente en los primates desde la mitad de la gestación. Evidencias recientes muestran que el sistema circadiano de los infantes es sensible a la luz desde etapas muy tempranas del desarrollo; también se ha propuesto que la iluminación de baja intensidad puede regular el reloj en desarrollo. Después del nacimiento se presenta una maduración progresiva de las salidas del sistema circadiano con marcados ritmos en los fenómenos de sueño-vigilia y secreción de hormonas. Estos hechos expresan la importancia de la regulación fótica circadiana en los lactantes. Así, la exposición de los bebés prematuros a ciclos de luz/oscuridad tiene como resultado un rápido establecimiento de patrones de actividad/reposo, los que se encuentran en el ciclo luz-oscuridad. Con el continuo estudio del desarrollo del sistema circadiano y la influencia sobre la fisiología humana y la enfermedad, se prevé que la aplicación de la biología circadiana se convertirá en un componente cada vez más importante en la atención neonatal.
REFERENCIAS (EN ESTE ARTÍCULO)
Cloherty JP, Eichenwald EC, Stark AR. Manual de Neonatologia. 6a Edicion. Wolters Kluwer; Lippincort Williams & Wilkins; 2009.
Seron-Ferre M, Torres-Farfan C, Forcelledo ML, Valenzuela GJ. The development of circadian rhythms in the fetus and neonate. Semin Perinatol. 2001;25:363-9.
Ariagno RL, Mirmiran M. Shedding light on the very low birth weight infant. J Pediatr. 2001;139:476-7.
Buijs RM, la Fleur SE, Wortel J, Van Heyningen C, Zuiddam L, Mettenleiter TC. The suprachiasmatic nucleus balances sympathetic and parasympathetic output to peripheral organs through separate preautonomic neurons. J Comp Neurol. 2003;464(1):36-48.
Hastings M, O’Neill JS, Maywood ES. Circadian clocks: regulators of endocrine and metabolic rhythms. J Endocrinol. 2007;195:187-98.
Weaver DR. The suprachiasmatic nucleus: a 25-year retrospective. J Biol Rhythms. 1998;13:100-12.
Rivkees SA, Hao H. Developing circadian rhythmicity. Semin Perinatol. 24(4):232-42.
Seron-Ferre M, Valenzuela GJ, Torres-Farfan C. Circadian clocks during embryonic and fetal development. Birth Defects Res C Embryo Today. 2007;81(3):204-14.
Rivkees SA, Hofman PL, Fortman J. Newborn primate infants are entrained by low intensity lighting. Proc Natl Acad Sci U S A. 1997;94:292-7.
Hao H, Rivkees SA. The biological clock of very premature primate infants is responsive to light. Proc Natl Acad Sci U S A. 1999;96:2426-9.
Ohta H, Xu S, Moriya T, Ligo M, Watanabe T, Nakahata N, et al. Maternal feeding controls fetal biological clock. PLoS One. 2008;3(7):e2601.
Swaab DF, Fliers E, Portiman TS. The suprachiasmatic nucleus of the humans brain in relation to sex, age, and dementia. Brain Res. 1985;342:37-44.
Akiyama S, Ohta H, Watanabe S, Moriya T, Hariu A, Nakahata N, et al. The uterus sustains stable biological clock during pregnancy. Tohoku J Exp Med. 2010;221(4):287-98.
Aagaard-Tillery KM, Grove K, Bishop J, Ke X, Fu Q, McKnight R, Lane R. Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol. 2008;41(2):91-102.
Suter M, Bocock P, Showalter L, Hu M, Shope C, McKnight R, et al. Epigenomics: maternal high-fat diet exposure in utero disrupts peripheral circadian gene expression in nonhuman primates. FASEB J., 2011;25(2):714-26.
Reppert SM, Weaver DR, Rivkees SA. Maternal communication of circadian phase to the developing mammal. Psychoneuroendocrinology. 1988;13(1-2):63-78.
Nováková M, Sládek M, Sumová A. Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime. J Biol Rhythms. 2010;25(5):350-60.
El-Hennamy R, Mateju K, Bendová Z, Sosniyenko S, Sumová A. Maternal control of the fetal and neonatal rat suprachiasmatic nucleus. J Biol Rhythms. 2008;23(5):435-44.
Kintraia PI, Zarnadze MG, Kintraia NP, Kashakashvili IG. Development of daily rhythmicity in heart rate and locomotor activity in the human fetus. J Circadian Rhythms. 2005;3(1):5.
Kivlighan KT, DiPietro JA, Costigan KA, Laudenslager ML. Diurnal rhythm of cortisol during late pregnancy: associations with maternal psychological well-being and fetal growth. Psychoneuroendocrinology. 2008;33(9):1225-35.
Henderson JM, France KG, Owens JL, Blampied NM. Sleeping through the night: the consolidation of self-regulated sleep across the first year of life. Pediatrics. 2010;126(5):e1081-7.
Anders TF, Keener M. Developmental course of nighttime sleep-wake patterns in full-term and premature infants during the first year of life. I. Sleep. 1985;8(3):173-92.
Glotzbach SF, Edgar DM, Ariagno RL. Biological rhythmicity in preterm infants prior to discharge from neonatal intensive care. Pediatrics. 1995;95:231-7.
Rivkees SA. Emergence and influences of circadian rhythmicity in infants. Clin Perinatol. 2004;31(2):217-28.
Lörh B, R Siegmund. Ultradian and circadian rhythms behavior during early infancy of sleep-wake and foodintake Chronobiology International. 1999;16(2):129-148.
Rivkees SA, Gross I, Mayes L. Influence of cycled lighting on the development of rest-activity patterns in premature infants. Pediatr Res. 2002;51:375.
Mirmiran M, Ariagno RL. Influence of light in the NICU on the development of circadian rhythms in preterm infants. Semin Perinatol. 2000;24:247-57.
Deprés-Brummer P, Lévi F, Metzger G, Touitou Y. Lightinduced suppression of the rat circadian system. Am J Physiol. 1995;268(5 Pt 2):R1111-R1116.
Jackson JA, Wailoo MP, Thompson JR, Petersen SA. Early physiological development of infants with intrauterine growth retardation. Arch Dis Child Fetal Neonatal Ed. 2004;89(1):F46-F50.
Rivkees SA, Gross I, Mayes L. Influence of cycled lighting on the development of rest-activity patterns in premature infants [abstract]. Pediatr. 2002;Re; 51:375.
Mann NP, Haddow R, Stokes L, Goodley S, Rutter N; Effect of night and day on preterm infants in a newborn nursery: randomised trial. Br Med J (Clin Res Ed). 1986;293:1265-7.
Brandon DH, Holditch-Davis D, Belyea M. Preterm infants born at less than 31 weeks’ gestation have improved growth in cycled light compared with continuous near darkness. J Pediatr. 2002;140:192-9.
McGraw K, Hoffmann R, Harker C, Herman JH. The development of circadian rhythms in a human infant. Sleep. 1999;22:303-10.
Rivkees SA. Developing circadian rhythmicity in infants. Pediatrics. 2003;112(2):373-81.
Glass P, Avery GB, Subramanian KN, Keys MP, Sostek AM, Friendly DS. Effect of bright light in the hospital nursery on the incidence of retinopathy of prematurity. N Engl J Med. 1985;313:401-4.
Als H, Lawhon G, Duffy FH, McAnulty GB, Gibes-Grossman R, Blickman JG. Individualized developmental care for the very low-birth weight preterm infant. Medical and neurofunctional effects. JAMA. 1994;272:853-8.