2002, Número 3-4
<< Anterior Siguiente >>
Microbiología 2002; 44 (3-4)
Evaluación de la producción de sideróforos por Pseudomonas aeruginosa PSS
Díaz DME, Villa P, Frías A
Idioma: Español
Referencias bibliográficas: 20
Paginas: 112-117
Archivo PDF: 69.21 Kb.
FRAGMENTO
Sin Resumen
REFERENCIAS (EN ESTE ARTÍCULO)
Budzikiewicz, H 1993. Secondary metabolites from fluorescent Pseudomonads. FEMS Microbiology Reviews. 104:209-228.
Buysens, S.; K. Heungens; J. Poppe and M. Höfte, 1996. Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl. Environ. Microbiol. 62:865-871.
Casida, L.E. J.R., 1992. Competitive ability and survival in soil of Pseudomonas strain 679-2 a dominant, nonobligate bacterial predator of bacteria. Appl. Environ. Microbiol. 58:32-37.
Cohen, J.I.; C. Falconi, and J. Komen, 1998. Strategic decisions for agricultural biotechnology. Synthesis of four policy seminars. 38:1-11.
Champomier-Veges, Mch, A. Stintzi and J.M. Meyer, 1996. Acquisition of iron by the non-siderophore producing Pseudomonas fragi. Microbiology. 142:1191-1199
Chiriani, L.; S. Tobacchioni, and A. Bevivino, 1993. Interactions between rhizosphere microorganisms under iron limitation. Arch.. Microbiol. 160:68-73.
Demange, P.; S. Wenderbaum; A. Bateman; A. Dell and M.A. Abdallah, 1987.Bacterial siderophores: structure and physicochemical properties of pyoverdins and related compounds, pp. 167-187 In G. Winkelman, D.v.d. Helm y J.B. Neilands (Eds). Iron Transport in Microbes.
Fujimoto, D.K.; D.M. Weller y L.S Thomashow, 1995. Role of secondary metabolites in root disease suppression, pp.330-347. In K.M.M. Dakshini and F.A. Einhellig (eds.), Allelopathy, Organisms, Processes and Applications. ACS. Symposium Series 582. American Chemical Society, Washington, DC.
Greenstein, J.P.; M. Winitz, 1961. Chapter 11, Colorimetric Methods. Chemistry of the amino acids, pp. 1312-1317. In J. Wiley and Sons, Inc. , New York.
King, E.O., Ward, M.K., Raney, D.E., 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44:301-307.
Linget, C.; D.G. Slylianou; A. Dell; R.E. Wolff, Y. Piémont; and M.A. Abdallah, 1992. Bacterial siderophores: The structure of a desferribactin produced by Pseudomonas fluorescens ATTC 13525. Tetrahedron Letters 33:3851-3854.
Loper, J.E., and S.E. Lindow. 1987. Lack of evidence for in situ fluorescent pigment production by Pseudomonas syringae pv. syringae on bean leaf surfaces. Phytopathology 77: 1449-1454.
Manninen, O., T. Mattila-Sandholm 1994. Methods for the detection of Pseudomonas siderophores. Journal of Microbiological Methods 19:223-234.
Meyer, J.M. and M..A. Abdallah, 1978. The fluorescent pigment of Pseudomonas fluorescens. Biosynthesis, purification and physicochemical properties. J. Gen. Microbiol. 107:319-328.
Miller, G.L, 1959. Use of Dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem 31:426-428.
Neilands, J.B. 1984. Methodology of Siderophores. Struct. Bond. 58:1-24.
O(Sullivan, D.J. and F. O(Gara, (1992). Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56:662-676.
Raaska, L; L Viikari, and T. Mattila-Sandholm , 1993. Detection of siderophores in growing cultures of Pseudomonas spp. J. Ind. Microbiol. 11:181-186.
Thomashow, L.S., Weller, D.M., (1990). Role of antibiotics and siderophores in biocontrol of take-all disease of wheat. Plant and Soil. 129:93 -99.
Wilson, M. 1997. Biocontrol of aerial plant diseases in agriculture and horticulture: current approaches and future prospects. J. Ind. Microbiol. Biotechnol. 19:188-191.