2012, Número 5
<< Anterior Siguiente >>
Rev Invest Clin 2012; 64 (5)
Vectores virales adeno-asociados: métodos de producción, purificación y aplicaciones en terapia génica
Mena-Enriquez M, Flores-Contreras L, Armendáriz-Borunda J
Idioma: Español
Referencias bibliográficas: 39
Paginas: 487-494
Archivo PDF: 186.61 Kb.
RESUMEN
Los vectores virales basados en virus adeno-asociados (VAA)
son ampliamente utilizados en protocolos de terapia génica,
esto se debe a que poseen características que los convierten en
valiosas herramientas para el tratamiento de enfermedades
genéticas, así como de otras patologías crónico-degenerativas.
El serotipo VAA2 ha sido el mejor caracterizado hasta el momento;
sin embargo, el desarrollo de vectores VAA derivados
de otros serotipos ha tenido especial atención debido a que presentan
diferente tropismo y eso aumenta su potencial para el
envío del transgen a otras células blanco, lo que los hace útiles
en la terapéutica de otras enfermedades específicas. Este
artículo aborda las características generales de los VAA, los
métodos de producción y purificación. Además, se analiza la
aplicación de estos vectores en modelos
in vitro e
in vivo, así
como en protocolos clínicos de terapia génica.
REFERENCIAS (EN ESTE ARTÍCULO)
Pañeda A, Varnell L, Mauleon I, Cretazz J, Berraondo P, Timmermans E, et al. Effect of Adeno-associated virus serotype and genomic structure on liver transduction and biodistribution on mice of both genders. Hum Gene Ther 2009; 20(8): 908-17.
Mao H, James T Jr, Schwein A, Shabashvili AE, Hauswirth WW, Gorbatyuk MS, Lewin AS. AAV delivery of wild-type rhodopsin preserves retinal function in a mouse model of autosomal dominant retinitis pigmentosa. Hum Gene Ther 2011; 22(5): 567-75.
Zhang Y, Duan D. Novel Mini-Dystrophin Gene Dual Adeno- Associated Virus Vectors Restore Neuronal Nitric Oxide Synthase Expression at the Sarcolemma. Hum Gene Ther 2011; 22(1): 1-6.
Jooss K, Chirmule N. Immunity to adenovirus and adeno-associated viral vectors: Implications for gene therapy. Gene Ther 2003; 10(11): 955-63.
Samulski RJ, Berns KI, Tan M, Muzyczka N. Cloning of adeno- associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci USA 1982; 79(6): 2077-81.
Schmidt M, Voutetakis A, Afione S, Zheng C, Mandikian D, Chiorini JA. Adeno-associated virus type 12 (AAV12): a novel AAV serotype with sialic acid- and heparan sulfate proteoglycan- independent transduction activity. J Virol 2008; 82(3): 1399-406.
Atchison RW, Casto BC, Hammon WM. Adenovirus-associated defective virus particles. Hum Gene Ther 1965; 13(149): 754-6.
Weitzman MD, Kyostio SR, Kotin RM, Owens RA. Adeno-associated virus (AAV) Rep proteins mediated complex formation between AAV and its integration site in human DNA. Proc Natl Acad Sci USA 1994; 91: 5808-12.
Girod A, Wobus CE, Zadori Z, Ried M, Leike K, Tijssen P, et al. The VP1 capsid protein of adenoassociated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. J Gen Virol 2002; 83(5): 973-8.
Berns K. Parvovirus replication. Microbiol Rev 1990; 54: 316-29.
Merten OW, Gény Fiamma C, Douar AM. Current issues in adeno-associated viral vector production. Gene Ther 2005; 12(Suppl. 1): S51-S61.
Summerford C, Samulski RJ. Membrane-associated heparin sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998; 72(2): 1438-45.
Summerford C, Bartlett JS, Samulski RJ. AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 1999; 5(1): 78-82.
Qing K, Mah C, Hansen J, Zhou S, Dwarki V, Srivastava A. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med 1999; 5(1): 71-7.
Samulski RJ, Zhu X, Xiao X, Brook JD, Housman DE, Epstein N, Hunter LA. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 1991; 10(12): 3941-50.
Yang J, Zhou W, Zhang Y, Zidon T, Ritchie T, Engelhardt JF. Concatamerization of adeno-associated virus circular genomes occurs through intermolecular recombination. J Virol 1999; 73(11): 9468-77.
Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977; 36(1): 59-74.
Matsushita T, Elliger S, Elliger C, Podsakoff G, Villarreal L, Kurtzman GJ, et al. Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther 1998; 5(7): 938-45.
Lock M, Alvira M, Vandenberghe LH, Samanta A, Toelen J, Debyser Z, Wilson JM. Rapid, simple, and versatile manufacturing of recombinant adeno-associated viral vectors at scale. Hum Gene Ther 2010; 21(10): 1259-71.
Grimm D, Kern A, Rittner K, Kleinschmidt JA. Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther 1998; 9(18): 2745-60.
Urabe M, Ding C, Kotin RM. Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 2002; 13(16): 1935-43.
Smith RH, Levy JR, Kotin RM. A simplified baculovirus-AAV expression vector system coupled with one-step affinity purification yields high-titer rAAV stocks from insect cells. Mol Ther 2009; 17(11): 1888-96.
Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K, Summerford C, et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther 1996; 6(6): 973-85.
Ayuso E, Mingozzi F, Montane J, Leon X, Anguela XM, Haurigot V, , et al. High AAV vector purity results in serotype- and tissue-independent enhancement of transduction efficiency. Gene Ther 2010; 17(4): 503-10.
Van der Perren A, Toelen J, Carlon M, Van den Haute C, Coun F, Heeman B, Reumers V, et al. Efficient and stable transduction of dopaminergic neurons in rat substantia nigra by rAAV 2/1, 2/2, 2/5, 2/6.2, 2/7, 2/8 and 2/9. Gene Ther 2011; 18(5): 517-27.
Okada T, Nonaka-Sarukawa M, Uchibori R, Kinoshita K, Hayashita- Kinoh H, Nitahara-Kasahara Y, et al. Scalable purification of adeno-associated virus serotype 1 (AAV1) and AAV8 vectors, using dual ion-exchange adsorptive membranes. Hum Gene Ther 2009; 20(9): 1013-21.
Duffy AM, O’Doherty AM, O’Brien T, Strappe PM. Purification of adenovirus and adeno-associated virus: comparison of novel membrane-based technology to conventional techniques. Gene Ther 2005; 12(Suppl. 1): S62-S72.
Pang J, Boye SE, Lei B, Boye SL, Everhart D, Ryals R, Umino Y, et al. Self-complementary AAV-mediated gene therapy restores cone function and prevents cone degeneration in two models of Rpe65 deficiency. Gene Ther 2010; 17(7): 815-26.
Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, Banfi S, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 2008; 358(21): 2240-8.
Björklund T, Carlsson T, Cederfjäll EA, Carta M, Kirik D. Optimized adeno-associated viral vector-mediated striatal DOPA delivery restores sensorimotor function and prevents dyskinesias in a model of advanced Parkinson’s disease. Brain 2010; 133: 496-511.
Muramatsu S, Fujimoto K, Kato S, Mizukami H, Asari S, Ikeguchi K, Kawakami T, et al. A phase I study of aromatic Lamino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 2010; 18(9): 1731-5.
Wang L, Louboutin JP, Bell P, Greig JA, Li Y, Wu D, Wilson JM. Muscle-directed gene therapy for hemophilia B with more efficient and less immunogenic AAV vectors. J Thromb Haemost 2011; 9(10): 2009-19.
Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, Ozelo MC, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12(3): 342-7.
Jiang H, Pierce GF, Ozelo MC, de Paula EV, Vargas JA, Smith P, Sommer J, et al. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther 2006; 14(3): 452-5.
Silver JN, Elder M, Conlon T, Cruz P, Wright AJ, Srivastava A, Flotte TR. Recombinant adeno-associated virus-mediated gene transfer for the potential therapy of adenosine deaminasedeficient severe combined immune deficiency. Hum Gene Ther 2011; 22(8): 935-49.
Suzumura K, Hirano T, Son G, Iimuro Y, Mizukami H, Ozawa K, Fujimoto J. Adeno-associated virus vector-mediated production of hepatocyte growth factor attenuates liver fibrosis in mice. Hepatol Int 2008; 2(1): 80-8.
Chen CA, Lo CK, Lin BL, Sibley E, Tang SC. Application of doxorubicin-induced rAAV2-p53 gene delivery in combined chemotherapy and gene therapy for hepatocellular carcinoma. Cancer Biol Ther 2008; 7(2): 303-9.
Shih CS, Laurie N, Holzmacher J, Spence Y, Nathwani AC, Davidoff AM, Dyer MA. AAV-mediated local delivery of interferon- beta for the treatment of retinoblastoma in preclinical models. Neuromolecular Med 2009; 11(1): 43-52.
Mao H, James T Jr, Schwein A, Shabashvili AE, Hauswirth WW, Gorbatyuk MS, Lewin AS. AAV delivery of wild-type rhodopsin preserves retinal function in a mouse model of autosomal dominant retinitis pigmentosa. Hum Gene Ther 2011; 22(5): 567-75.