2012, Número 6
<< Anterior Siguiente >>
Rev Invest Clin 2012; 64 (6)
Papel de los canales de sodio activados por voltaje en la capacidad metastásica de las células cancerosas
Hernández-Plata E
Idioma: Español
Referencias bibliográficas: 60
Paginas: 567-575
Archivo PDF: 291.87 Kb.
RESUMEN
La expresión funcional de canales de sodio dependientes de
voltaje (Na
V) en células cancerosas está asociada al incremento
de la capacidad metastásica. La actividad de los canales Na
V
modula distintos procesos celulares relacionados con el desarrollo
del fenotipo maligno, tales como la adhesión, galvanotaxis,
movilidad e invasividad. Dentro de la gran diversidad de
fenotipos cancerosos la expresión de canales Na
V es común
dentro de las células altamente metastásicas; sin embargo, el
tipo particular del canal expresado parece depender del tejido
en el que se genera el tumor primario. El propósito de este artículo
es revisar la literatura sobre los canales NaV expresados
en distintos tipos de cáncer, los procesos celulares en los que
participan y los mecanismos moleculares por los cuales promueven
metástasis.
REFERENCIAS (EN ESTE ARTÍCULO)
Heron M. Deaths: leading causes for 2007. Natl Vital Stat Rep 2011; 59: 1-95.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-74.
Pardo LA, Contreras-Jurado C, Zientkowska M, Alves F, Stühmer W. Role of voltage-gated potassium channels in cancer. J Membr Biol 2005; 3: 115-24.
Panner A, Wurster RD. T-type calcium channels and tumor proliferation. Cell Calcium 2006; 40: 253-9.
Lui VC, Lung SS, Pu JK, Hung KN, Leung GK. Invasion of human glioma cells is regulated by multiple chloride channels including ClC-3. Anticancer Res 2010; 11: 4515-24.
Klein M, Seeger P, Schuricht B, Alper SL, Schwab A. Polarization of Na(+)/H(+) and Cl(-)/HCO (3)(-) exchangers in migrating renal epithelial cells. J Gen Physiol 2000; 115: 599-608.
Cuddapah VA, Sontheimer H. Ion channels and transporters [corrected] in cancer. 2. Ion channels and the control of cancer cell migration. Am J Physiol Cell Physiol 2011; 301: C541- C549.
Kunzelmann K. Ion channels and cancer. J Membr Biol 2005; 205:159-73.
Papadopoulos MC, Saadoun S, Verkman AS. Aquaporins and cell migration. Pflugers Arch 2008; 456: 693-700.
Blackiston DJ, McLaughlin KA, Levin M. Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 2009; 8: 3519-28.
Prevarskaya N, Skryma R, Shuba Y. Ion channels and the hallmarks of cancer. Trends Mol Med 2010; 16: 107-21.
Bennett ES, Smith BA, Harper JM. Voltage-gated Na+ channels confer invasive properties on human prostate cancer cells. Pflugers Arch 2004; 447: 908-14.
Fraser SP, Diss JK, Chioni AM, et al. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 2005; 11: 5381-9.
Yildirim S, Altun S, Gumushan H, et al. Voltage-gated sodium channel activity promotes prostate cancer metastasis in vivo. Cancer Lett 2012.
Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 2005; 57: 397-409.
Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 2000; 26: 13-25.
Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XXXIX. Compendium of voltage-gated ion channels: sodium channels. Pharmacol Rev 2003; 55: 575-8.
Goldin AL. Resurgence of sodium channel research. Annu Rev Physiol 2001; 63: 871-94.
Yu FH, Catterall WA. Overview of the voltage-gated sodium channel family. Genome Biol 2003; 4: 207.
Isom LL. The role of sodium channels in cell adhesion. Front Biosci 2002; 7: 12-23.
Roger S, Rollin J, Barascu A, et al. Voltage-gated sodium channels potentiate the invasive capacities of human nonsmall- cell lung cancer cell lines. Int J Biochem Cell Biol 2007; 39: 774-86.
Cameron IL, Smith NK, Pool TB, Sparks RL. Intracellular concentration of sodium and other elements as related to mitogenesis and oncogenesis in vivo. Cancer Res 1980; 40: 1493-500.
Ouwerkerk R, Bleich KB, Gillen JS, Pomper MG, Bottomley PA. Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology 2003; 227: 529-37.
Roger S, Besson P, Le Guennec JY. Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line. Biochim Biophys Acta 2003; 1616: 107-11.
Grimes JA, Fraser SP, Stephens GJ et al. Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Lett 1995; 369: 290-4.
Smith P, Rhodes NP, Shortland AP, et al. Sodium channel protein expression enhances the invasiveness of rat and human prostate cancer cells. FEBS Lett 1998; 423: 19-24.
Diss JK, Archer SN, Hirano J, et al. Expression profiles of voltage- gated Na(+) channel alpha-subunit genes in rat and human prostate cancer cell lines. Prostate 2001; 48: 165-78.
Fraser SP, Diss JK, Lloyd LJ, et al. T-lymphocyte invasiveness: control by voltage-gated Na+ channel activity. FEBS Lett 2004; 569: 191-4.
House CD, Vaske CJ, Schwartz AM, et al. Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion. Cancer Res 2010; 70: 6957-67.
Hernandez-Plata E, Ortiz CS, Marquina-Castillo B, et al. Overexpression of NaV 1.6 channels is associated with the invasion capacity of human cervical cancer. Int J Cancer 2012; 130: 2013-23.
Diaz D, Delgadillo DM, Hernandez-Gallegos E, et al. Functional expression of voltage-gated sodium channels in primary cultures of human cervical cancer. J Cell Physiol 2007; 210: 469-78.
Palmer CP, Mycielska ME, Burcu H, et al. Single cell adhesion measuring apparatus (SCAMA): application to cancer cell lines of different metastatic potential and voltage-gated Na+ channel expression. Eur Biophys J 2008; 37: 359-68.
Chioni AM, Brackenbury WJ, Calhoun JD, et al. A novel adhesion molecule in human breast cancer cells: voltage-gated Na+ channel beta1 subunit. Int J Biochem Cell Biol 2009; 41: 1216-27.
Fraser SP, Ozerlat-Gunduz I, Onkal R, et al. Estrogen and nongenomic upregulation of voltage-gated Na(+) channel activity in MDA-MB-231 human breast cancer cells: role in adhesion. J Cell Physiol 2010; 224: 527-39.
Gillet L, Roger S, Besson P, et al. Voltage-gated Sodium Channel Activity Promotes Cysteine Cathepsin-dependent Invasiveness and Colony Growth of Human Cancer Cells. J Biol Chem 2009; 284: 8680-91.
Malhotra JD, Kazen-Gillespie K, Hortsch M, Isom LL. Sodium channel beta subunits mediate homophilic cell adhesion and re cruit ankyrin to points of cell-cell contact. J Biol Chem 2000; 275: 11383-8.
Brackenbury WJ, Davis TH, Chen C, et al. Voltage-gated Na+ channel beta1 subunit-mediated neurite outgrowth requires Fyn kinase and contributes to postnatal CNS development in vivo. J Neurosci 2008; 28: 3246-56.
Fraser SP, Salvador V, Manning EA, et al. Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol 2003; 195: 479-87.
Pan H, Djamgoz MB. Biochemical constitution of extracellular medium is critical for control of human breast cancer MDAMB- 231 cell motility. J Membr Biol 2008; 223: 27-36.
Fulgenzi G, Graciotti L, Faronato M, et al. Human neoplastic mesothelial cells express voltage-gated sodium channels involved in cell motility. Int J Biochem Cell Biol 2006; 38: 1146-59.
Schwab A. Function and spatial distribution of ion channels and transporters in cell migration. Am J Physiol Renal Physiol 2001; 280: F739-F747.
Djamgoz MBA, Mycielska M, Madeja Z, et al. Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltagegated Na+ channel activity. J Cell Sci 2001; 114: 2697-705.
Nuccitelli R. A role for endogenous electric fields in wound healing. Curr Top Dev Biol 2003; 58: 1-26.
Mycielska ME, Djamgoz MB. Cellular mechanisms of directcurrent electric field effects: galvanotaxis and metastatic disease. J Cell Sci 2004; 117: 1631-9.
Yan X, Han J, Zhang Z, et al. Lung cancer A549 cells migrate directionally in DC electric fields with polarized and activated EGFRs. Bioelectromagnetics 2009; 30: 29-35.
Pu J, McCaig CD, Cao L, et al. EGF receptor signalling is essential for electric-field-directed migration of breast cancer cells. J Cell Sci 2007; 120: 3395-403.
Craner MJ, Newcombe J, Black JA, et al. Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc Natl Acad Sci USA 2004; 101: 8168-73.
Andrikopoulos P, Baba A, Matsuda T, et al. Ca2+ influx through reverse mode Na+/Ca2+ exchange is critical for vascular endothelial growth factor-mediated extracellular signal-regulated kinase (ERK) 1/2 activation and angiogenic functions of human endothelial cells. J Biol Chem 2011; 286: 37919-31.
Ishibashi H, Dinudom A, Harvey KF, Kumar S, Young JA, Cook DI. Na+-H+ exchange in salivary secretory cells is controlled by an intracellular Na+ receptor. Proc Natl Acad Sci USA 1999; 96: 9949-53.
Mycielska ME, Fraser SP, Szatkowski M, Djamgoz MB. Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: II. Secretory membrane activity. J Cell Physiol 2003; 195: 461-9.
Stys PK. White matter injury mechanisms. Curr Mol Med 2004; 4: 113-30.
Brisson L, Gillet L, Calaghan S, et al. Na(V)1.5 enhances breast cancer cell invasiveness by increasing NHE1- dependent H(+) efflux in caveolae. Oncogene 2011; 30: 2070-6.
Bourguignon LY, Singleton PA, Diedrich F, et al. CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J Biol Chem 2004; 279: 26991-7007.
Rofstad EK, Mathiesen B, Kindem K, Galappathi K. Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 2006; 66: 6699-707.
Andrikopoulos P, Fraser SP, Patterson L, et al. Angiogenic functions of voltage-gated Na+ Channels in human endothelial cells: modulation of vascular endothelial growth factor (VEGF) signaling. J Biol Chem 2011; 286: 16846-60.
Ou SW, Kameyama A, Hao LY, et al. Tetrodotoxin-resistant Na+ channels in human neuroblastoma cells are encoded by new variants of Nav1.5/SCN5A. Eur J Neurosci 2005; 22: 793-801.
Gao R, Shen Y, Cai J, et al. Expression of voltage-gated sodium channel alpha subunit in human ovarian cancer. Oncol Rep 2010; 23: 1293-9.
Diss JK, Stewart D, Pani F, Foster CS, Walker MM, Patel A, Djamgoz MB. A potential novel marker for human prostate cancer: voltage-gated sodium channel expression in vivo. Prostate Cancer Prostatic Dis 2005; 8: 266-73.
Diss JK, Fraser SP, Walker MM, et al. Beta-subunits of voltagegated sodium channels in human prostate cancer: quantitative in vitro and in vivo analyses of mRNA expression. Prostate Cancer Prostatic Dis 2008; 11: 325-33.
Cooper DM, Schell MJ, Thorn P, Irvine RF. Regulation of adenylyl cyclase by membrane potential. J Biol Chem 1998; 273: 27703-7.