2012, Número 6
<< Anterior Siguiente >>
Rev Invest Clin 2012; 64 (6)
¿Es la aldosterona un modulador del tono vascular?
Sánchez-Pozos K, Bobadilla NA
Idioma: Español
Referencias bibliográficas: 102
Paginas: 546-557
Archivo PDF: 229.58 Kb.
RESUMEN
El endotelio vascular es un tejido dinámico, sensible a estímulos
físicos y químicos. El hecho de que las células endoteliales
se encuentren expuestas directamente a los componentes del
fluido sanguíneo les proporciona la capacidad de regular diversas
funciones fisiológicas, entre ellas la coagulación, el metabolismo
de la pared vascular, la permeabilidad transcapilar
de solutos y agua, y la remodelación del tejido vascular subyacente.
Aunado a estas funciones, el endotelio vascular es
trascendental en la regulación y mantenimiento local del tono
vascular, función que realiza a través de la liberación de factores
vasoactivos como el óxido nítrico, endotelina-1, angiotensina-
II, adenosina, prostaciclinas, tromboxanos, radicales libres,
entre otros compuestos no menos importantes. Estudios recientes
sugieren un nuevo actor en el control del tono vascular:
la aldosterona. De esta manera, las evidencias apuntan a
que esta hormona mineralocorticoide puede producir vasoconstricción
en condiciones fisiopatológicas, a través de activar
genes como la endotelina-1, la glucosa 6 fosfato desdidrogenasa
y cinasa Rho, así como alterar la fosforilación y actividad de
la sintasa de óxido nítrico endotelial (eNOS). Asimismo, se ha
observado la implicación de la aldosterona en la generación de
estrés oxidante, acción que ejerce indirectamente a través
de la reducción de la biodisponibilidad de nicotinamida-adeninadinucleótido-
fosfato reducido (NADPH). Por lo tanto, esta
revisión se centra en describir algunos de los mecanismos
implicados en la regulación del tono vascular y revisar los
estudios en los que se muestra la evidencia reciente del papel
de la aldosterona como mediadora de esta función.
REFERENCIAS (EN ESTE ARTÍCULO)
Newby AC, Henderson AH. Stimulus-secretion coupling in vascular endothelial cells. Annu Rev Physiol 1990; 52: 661-74.
Cola MS, Gava AL, Meyrelles SS, Vasquez EC. Endothelial dysfunction of resistance vessels in female apolipoprotein Edeficient mice. Lipids Health Dis 2010; 9: 51.
Napoli R, Guardasole V, Zarra E, D’Anna C, De SA, Lupoli GA, et al. Impaired endothelial- and nonendothelial-mediated vasodilation in patients with acute or chronic hypothyroidism. Clin Endocrinol (Oxf) 2010; 72(1): 107-11.
Bobadilla NA, Gamba G. New insights into the pathophysiology of cyclosporine nephrotoxicity: a role of aldosterone. Am J Physiol Renal Physiol 2007; 293(1): F2-F9.
Viengchareun S, Le MD, Martinerie L, Munier M, Pascual-Le TL, Lombes M. The mineralocorticoid receptor: insights into its molecular and (patho)physiological biology. Nucl Recept Signal 2007; 5: e012.
Weber M, Wehling M, Losel R. Proteins interact with the cytosolic mineralocorticoid receptor depending on the ligand. Am J Physiol Heart Circ Physiol 2008; 295(1): H361-H365.
Galigniana MD, Erlejman AG, Monte M, Gomez-Sanchez C, Piwien-Pilipuk G. The hsp90-FKBP52 complex links the mine- ralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events. Mol Cell Biol 2010; 30(5): 1285-98.
Gambaryan S, Butt E, Tas P, Smolenski A, Allolio B, Walter U. Regulation of aldosterone production from zona glomerulosa cells by ANG II and cAMP: evidence for PKA-independent activation of CaMK by cAMP. Am J Physiol Endocrinol Metab 2006; 290(3): E423-E433.
Dierks A, Lichtenauer UD, Sackmann S, Spyroglou A, Shapiro I, Geyer M, et al. Identification of adrenal genes regulated in a potassium-dependent manner. J Mol Endocrinol 2010; 45(4): 193-206.
Hattangady NG, Olala LO, Bollag WB, Rainey WE. Acute and chronic regulation of aldosterone production. Mol Cell Endocrinol 2012; 350(2): 151-62.
Hoover RS. Angiotensin II: a candidate for an aldosterone-independent mediator of potassium preservation during volume depletion. Kidney Int 2011; 79(4): 377-9.
Farman N, Rafestin-Oblin ME. Multiple aspects of mineralocorticoid selectivity. Am J Physiol Renal Physiol 2001; 280(2): F181-F192.
Chen C, Liang W, Jia J, van GH, Singhal PC, Ding G. Aldosterone induces apoptosis in rat podocytes: role of PI3-K/Akt and p38MAPK signaling pathways. Nephron Exp Nephrol 2009; 113(1): e26-e34.
Patni H, Mathew JT, Luan L, Franki N, Chander PN, Singhal PC. Aldosterone promotes proximal tubular cell apoptosis: role of oxidative stress. Am J Physiol Renal Physiol 2007; 293(4): F1065-F1071.
Brem AS, Morris DJ, Ge Y, Dworkin LD, Tolbert E, Gong R. Direct Fibrogenic Effects of Aldosterone on Normotensive Kidney: An Effect Modified by 11{beta}-HSD Activity. Am J Physiol Renal Physiol 2010.
Queisser N, Oteiza PI, Stopper H, Oli RG, Schupp N. Aldosterone induces oxidative stress, oxidative DNA damage and NFkappaB- activation in kidney tubule cells. Mol Carcinog 2011; 50(2): 123-35.
Wehling M. Nongenomic aldosterone effects: the cell membrane as a specific target of mineralocorticoid action. Steroids 1995; 60(1): 153-56.
Ngarmukos C, Grekin RJ. Nontraditional aspects of aldosterone physiology. Am J Physiol Endocrinol Metab 2001; 281(6): E1122-E1127.
Christ M, Wehling M. Rapid actions of aldosterone: lymphocytes, vascular smooth muscle and endothelial cells. Steroids 1999; 64(1-2): 35-41.
Christ M, Douwes K, Eisen C, Bechtner G, Theisen K, Wehling M. Rapid effects of aldosterone on sodium transport in vascular smooth muscle cells. Hypertension 1995; 25(1): 117-23.
Grossmann C, Gekle M. Nongenotropic aldosterone effects and the EGFR: interaction and biological relevance. Steroids 2008; 73(9-10): 973-8.
Heylen E, Huang A, Sun D, Kaley G. Nitric oxide-mediated dilation of arterioles to intraluminal administration of aldosterone. J Cardiovasc Pharmacol 2009; 54(6): 535-42.
Grossmann C, Benesic A, Krug AW, Freudinger R, Mildenberger S, Gassner B, Gekle M. Human mineralocorticoid receptor expression renders cells responsive for nongenotropic aldosterone actions. Mol Endocrinol 2005; 19(7): 1697-710.
Gros R, Ding Q, Sklar LA, Prossnitz EE, Arterburn JB, Chorazyczewski J, Feldman RD. GPR30 expression is required for the mineralocorticoid receptor-independent rapid vascular effects of aldosterone. Hypertension 2011; 57(3): 442-51.
Grossmann C, Freudinger R, Mildenberger S, Husse B, Gekle M. EF domains are sufficient for nongenomic mineralocorticoid receptor actions. J Biol Chem 2008; 283(11): 7109-16.
Min LJ, Mogi M, Li JM, Iwanami J, Iwai M, Horiuchi M. Aldosterone and angiotensin II synergistically induce mitogenic response in vascular smooth muscle cells. Circ Res 2005; 97(5): 434-42.
Schmidt BM, Oehmer S, Delles C, Bratke R, Schneider MP, Klingbeil A, et al. Rapid nongenomic effects of aldosterone on human forearm vasculature. Hypertension 2003; 42(2): 156- 60.
Nietlispach F, Julius B, Schindler R, Bernheim A, Binkert C, Kiowski W, Brunner-La Rocca HP. Influence of acute and chronic mineralocorticoid excess on endothelial function in healthy men. Hypertension 2007; 50(1): 82-8.
Chai W, Garrelds IM, Arulmani U, Schoemaker RG, Lamers JM, Danser AH. Genomic and nongenomic effects of aldosterone in the rat heart: why is spironolactone cardioprotective? Br J Pharmacol 2005; 145(5): 664-71.
Leopold JA, Dam A, Maron BA, Scribner AW, Liao R, Handy DE, Stanton RC, et al. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat Med 2007; 13(2): 189-97.
Sartorio CL, Fraccarollo D, Galuppo P, Leutke M, Ertl G, Stefanon I, Bauersachs J. Mineralocorticoid receptor blockade improves vasomotor dysfunction and vascular oxidative stress early after myocardial infarction. Hypertension 2007; 50(5): 919-25.
Nishiyama A, Yao L, Nagai Y, Miyata K, Yoshizumi M, Kagami S, et al. Possible contributions of reactive oxygen species and mitogen-activated protein kinase to renal injury in aldosterone/ salt-induced hypertensive rats. Hypertension 2004; 43(4): 841-8.
Hayashi H, Kobara M, Abe M, Tanaka N, Gouda E, Toba H, et al. Aldosterone nongenomically produces NADPH oxidase-dependent reactive oxygen species and induces myocyte apoptosis. Hypertens Res 2008; 31(2): 363-75.
Zhu X, Manning RD Jr, Lu D, Gomez-Sanchez CE, Fu Y, Juncos LA, Liu R. Aldosterone stimulates superoxide production in macula densa cells. Am J Physiol Renal Physiol 2011; 301(3): F529-F535.
Iwashima F, Yoshimoto T, Minami I, Sakurada M, Hirono Y, Hirata Y. Aldosterone induces superoxide generation via Rac1 activation in endothelial cells. Endocrinology 2008; 149(3): 1009-14.
Kopp JB, Klotman PE. Cellular and molecular mechanisms of cyclosporin nephrotoxicity. J Am Soc Nephrol 1990; 1(2): 162-79.
de Mattos AM, Olyaei AJ, Bennett WM. Nephrotoxicity of immunosuppressive drugs: long-term consequences and challenges for the future. Am J Kidney Dis 2000; 35(2): 333-46.
Feria I, Pichardo I, Juarez P, Ramirez V, Gonzalez MA, Uribe N, et al. Therapeutic benefit of spironolactone in experimental chronic cyclosporine A nephrotoxicity. Kidney Int 2003; 63(1): 43-52.
Perez-Rojas JM, Derive S, Blanco JA, Cruz C, Martinez dlM, Gamba G, Bobadilla NA. Renocortical mRNA expression of vasoactive factors during spironolactone protective effect in chronic cyclosporine nephrotoxicity. Am J Physiol Renal Physiol 2005; 289(5): F1020-F1030.
Perez-Rojas J, Blanco JA, Cruz C, Trujillo J, Vaidya VS, Uribe N, et al. Mineralocorticoid receptor blockade confers renoprotection in preexisting chronic cyclosporine nephrotoxicity. Am J Physiol Renal Physiol 2007; 292(1): F131-F139.
Kelly KJ, Molitoris BA. Acute renal failure in the new millennium: time to consider combination therapy. Semin Nephrol 2000; 20(1): 4-19.
Friedewald JJ, Rabb H. Inflammatory cells in ischemic acute renal failure. Kidney Int 2004; 66(2): 486-91.
Weight SC, Bell PR, Nicholson ML. Renal ischaemia-reperfusion injury. Br J Surg 1996; 83(2): 162-70.
Wu I, Parikh CR. Screening for kidney diseases: older measures versus novel biomarkers. Clin J Am Soc Nephrol 2008; 3(6): 1895-901.
Kelly KJ. Acute renal failure: much more than a kidney disease. Semin Nephrol 2006; 26(2): 105-13.
Ramesh G, Reeves WB. TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest 2002; 110(6): 835-42.
Safdar A, Ma J, Saliba F, Dupont B, Wingard JR, Hachem RY, et al, Raad II. Drug-induced nephrotoxicity caused by amphotericin B lipid complex and liposomal amphotericin B: a review and meta-analysis. Medicine (Baltimore) 2010; 89(4): 236-44.
John R, Herzenberg AM. Renal toxicity of therapeutic drugs. J Clin Pathol 2009; 62(6): 505-15.
Taber SS, Pasko DA. The epidemiology of drug-induced disorders: the kidney. Expert Opin Drug Saf 2008; 7(6): 679-90.
Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 2011; 121(11): 4210-21.
Mejia-Vilet JM, Ramirez V, Cruz C, Uribe N, Gamba G, Bobadilla NA. Renal ischemia-reperfusion injury is prevented by the mineralocorticoid receptor blocker spironolactone. Am J Physiol Renal Physiol 2007; 293(1): F78-F86.
Ramirez V, Trujillo J, Valdes R, Uribe N, Cruz C, Gamba G, Bobadilla NA. Adrenalectomy prevents renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2009; 297(4): F932-F942.
Sánchez-Pozos K, Barrera-Chimal J, Garzón-Muvdi J, Pérez- Villalva R, Rodríguez-Romo R, Cruz C, et al. Recovery from ischemic acute kidney injury by spironolactone administration. Nephrol Dial Transplant 2012; 27(8): 3160-69.
Mayer B, Schmidt K, Humbert P, Bohme E. Biosynthesis of endothelium-derived relaxing factor: a cytosolic enzyme in porcine aortic endothelial cells Ca2+-dependently converts Larginine into an activator of soluble guanylyl cyclase. Biochem Biophys Res Commun 1989; 164(2): 678-85.
Palmer RM, Moncada S. A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells. Biochem Biophys Res Commun 1989; 158(1): 348-52.
Stuehr DJ. Mammalian nitric oxide synthases. Biochim Biophys Acta 1999; 1411(2-3): 217-30.
Cooke JP, Singer AH, Tsao P, Zera P, Rowan RA, Billingham ME. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest 1992; 90(3): 1168-72.
Martin ER, Marsden PA, Brenner BM, Ballermann BJ. Identification and characterization of endothelin binding sites in rat renal papillary and glomerular membranes. Biochem Biophys Res Commun 1989; 162(1): 130-7.
Stroes E, Hijmering M, van ZM, Wever R, Rabelink TJ, van Faassen EE. Origin of superoxide production by endothelial nitric oxide synthase. FEBS Lett 1998; 438(3): 161-4.
Cortes-Gonzalez CC, Ramirez-Gonzalez V, Ariza AC, Bobadilla NA. Functional significance of heat shock protein 90. Rev Invest Clin 2008; 60(4): 311-20.
Boo YC, Jo H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am J Physiol Cell Physiol 2003; 285(3): C499-C508.
Lee DL, Sasser JM, Hobbs JL, Boriskie A, Pollock DM, Carmines PK, Pollock JS. Posttranslational regulation of NO synthase activity in the renal medulla of diabetic rats. Am J Physiol Renal Physiol 2005; 288(1): F82-F90.
Mount PF, Fraser SA, Watanabe Y, Lane N, Katsis F, Chen ZP, et al. Phosphorylation of neuronal and endothelial nitric oxide synthase in the kidney with high and low salt diets. Nephron Physiol 2006; 102(2): 36-50.
Nagata D, Takahashi M, Sawai K, Tagami T, Usui T, Shimatsu A, et al. Molecular Mechanism of the Inhibitory Effect of Aldosterone on Endothelial NO Synthase Activity. Hypertension 2006.
Atochin DN, Wang A, Liu VW, Critchlow JD, Dantas AP, Looft-Wilson R, et al. The phosphorylation state of eNOS modulates vascular reactivity and outcome of cerebral ischemia in vivo. J Clin Invest 2007; 117(7): 1961-7.
Kosugi T, Heinig M, Nakayama T, Matsuo S, Nakagawa T. eNOS knockout mice with advanced diabetic nephropathy have less benefit from renin-angiotensin blockade than from aldosterone receptor antagonists. Am J Pathol 2010; 176(2): 619-29.
Godfrey V, Martin AL, Struthers AD, Lyles GA. Effects of aldosterone and related steroids on LPS-induced increased expression of inducible NOS in rat aortic smooth muscle cells. Br J Pharmacol 2011; 164(8): 2003-14.
Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332(6163): 411-15.
Russell FD, Davenport AP. Secretory pathways in endothelin synthesis. Br J Pharmacol 1999; 126(2): 391-98.
Brunner F, Bras-Silva C, Cerdeira AS, Leite-Moreira AF. Cardiovascular endothelins: essential regulators of cardiovascular homeostasis. Pharmacol Ther 2006; 111(2): 508-31.
Nguyen TD, Vequaud P, Thorin E. Effects of endothelin receptor antagonists and nitric oxide on myogenic tone and alpha- adrenergic-dependent contractions of rabbit resistance arteries. Cardiovasc Res 1999; 43(3): 755-61.
Rubanyi GM, Polokoff MA. Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 1994; 46(3): 325-415.
Kedzierski RM, Yanagisawa M. Endothelin system: the double- edged sword in health and disease. Annu Rev Pharmacol Toxicol 2001; 41: 851-76.
Masaki T. Possible role of endothelin in endothelial regulation of vascular tone. Annu Rev Pharmacol Toxicol 1995; 35: 235- 55.
Lehrke I, Waldherr R, Ritz E, Wagner J. Renal endothelin-1 and endothelin receptor type B expression in glomerular diseases with proteinuria. J Am Soc Nephrol 2001; 12(11): 2321-9.
Thorin E, Webb DJ. Endothelium-derived endothelin-1. Pflugers Arch 2010; 459(6): 951-8.
Strachan FE, Spratt JC, Wilkinson IB, Johnston NR, Gray GA, Webb DJ. Systemic blockade of the endothelin-B receptor increases peripheral vascular resistance in healthy men. Hypertension 1999; 33(1, Pt. 2): 581-85.
Kinlay S, Behrendt D, Wainstein M, Beltrame J, Fang JC, Creager MA, et al. Role of endothelin-1 in the active constriction of human atherosclerotic coronary arteries. Circulation 2001; 104(10): 1114-8.
Boulanger C, Luscher TF. Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. J Clin Invest 1990; 85(2): 587-90.
King AJ, Pfeffer JM, Pfeffer MA, Brenner BM. Systemic hemodynamic effects of endothelin in rats. Am J Physiol 1990; 258(3, Pt. 2): H787-H792.
Gilbert P, Thorin E. Endothelin-1 limits vascular smooth muscle beta-adrenergic receptor sensitivity by a PKC-dependent pathway. J Cardiovasc Pharmacol 2003; 42(4): 534-8.
Okajima M, Parent R, Thorin E, Lavallee M. Pathophysiological plasma ET-1 levels antagonize beta-adrenergic dilation of coronary resistance vessels in conscious dogs. Am J Physiol Heart Circ Physiol 2004; 287(4): H1476-H1483.
Sauvageau S, Thorin E, Villeneuve L, Dupuis J. Change in pharmacological effect of endothelin receptor antagonists in rats with pulmonary hypertension: role of ETB-receptor expression levels. Pulm Pharmacol Ther 2009; 22(4): 311-7.
Herrera M, Garvin JL. A high-salt diet stimulates thick ascending limb eNOS expression by raising medullary osmolality and increasing release of endothelin-1. Am J Physiol Renal Physiol 2005; 288(1): F58-F64.
Stow LR, Gumz ML, Lynch IJ, Greenlee MM, Rudin A, Cain BD, Wingo CS. Aldosterone modulates steroid receptor binding to the endothelin-1 gene (edn1). J Biol Chem 2009; 284(44): 30087-96.
Nguyen Dinh CA, Griol-Charhbili V, Loufrani L, Labat C, Benjamin L, Farman N, et al. The endothelial mineralocorticoid receptor regulates vasoconstrictor tone and blood pressure. FASEB J 2010; 24(7): 2454-63.
Leung T, Chen XQ, Manser E, Lim L. The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol 1996; 16(10): 5313-27.
Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 1996; 271(34): 20246-9.
Kawano Y, Fukata Y, Oshiro N, Amano M, Nakamura T, Ito M, et al. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol 1999; 147(5): 1023-38.
van Nieuw Amerongen GP, van DS, Vermeer MA, Collard JG, van Hinsbergh VW. Activation of RhoA by thrombin in endothelial hyperpermeability: role of Rho kinase and protein tyrosine kinases. Circ Res 2000; 87(4): 335-40.
Martinez MC, Randriamboavonjy V, Ohlmann P, Komas N, Duarte J, Schneider F, et al. Involvement of protein kinase C, tyrosine kinases, and Rho kinase in Ca(2+) handling of human small arteries. Am J Physiol Heart Circ Physiol 2000; 279(3): H1228-H1238.
Sun GP, Kohno M, Guo P, Nagai Y, Miyata K, Fan YY, et al. Involvements of rho-kinase and tgf-Beta pathways in aldosterone- induced renal injury. J Am Soc Nephrol 2006; 17(8): 2193-201.
Nishikimi T, Matsuoka H. Molecular mechanisms and therapeutic strategies of chronic renal injury: renoprotective effect of rho-kinase inhibitor in hypertensive glomerulosclerosis. J Pharmacol Sci 2006; 100(1): 22-8.
Versteilen AM, Korstjens IJ, Musters RJ, Groeneveld AB, Sipkema P. Rho kinase regulates renal blood flow by modulating eNOS activity in ischemia-reperfusion of the rat kidney. Am J Physiol Renal Physiol 2006; 291(3): F606-F611.
Miyata K, Hitomi H, Guo P, Zhang GX, Kimura S, Kiyomoto H, et al. Possible involvement of Rho-kinase in aldosteroneinduced vascular smooth muscle cell remodeling. Hypertens Res 2008; 31(7): 1407-13.
Sanchez-Pozos K, Barrera-Chimal J, Garzon-Muvdi J, Perez- Villalva R, Rodriguez-Romo R, Cruz C, et al. Recovery from ischemic acute kidney injury by spironolactone administration. Nephrol Dial Transplant 2012.
Doi T, Sakoda T, Akagami T, Naka T, Mori Y, Tsujino T, et al. Aldosterone induces interleukin-18 through endothelin-1, angiotensin II, Rho/Rho-kinase, and PPARs in cardiomyocytes. Am J Physiol Heart Circ Physiol 2008; 295(3): H1279-H1287.
Fujimura N, Noma K, Hata T, Soga J, Hidaka T, Idei N, et al. Mineralocorticoid receptor blocker eplerenone improves endothelial function and inhibits Rho-associated kinase activity in patients with hypertension. Clin Pharmacol Ther 2012; 91(2): 289-97.
Bianchi S, Bigazzi R, Campese VM. Antagonists of aldosterone and proteinuria in patients with CKD: an uncontrolled pilot study. Am J Kidney Dis; 46(1): 45-51.
Bertocchio JP, Jaisser F. Aldosterone and kidney diseases: an emergent paradigm with important clinical implications. Nephrol Ther 2011; 7(3): 139-47.
Chrysostomou A, Pedagogos E, MacGregor L, Becker GJ. Double-Blind, Placebo-Controlled Study on the Effect of the aldosterone receptor antagonist spironolactone in patients who have persistent proteinuria and are on long-term angiotensin- converting enzyme inhibitor therapy, with or without an angiotensin II receptor blocker. Clin J Am Soc Nephrol 2006; 1: 256-62.
Nielsen SE, Persson F, Frandsen E, Sugaya T, Hess G, Zdunek D, et al. Spironolactone diminishes urinary albumin excretion in patients with type 1 diabetes and microalbuminuria: a randomized placebo-controlled crossover study. Diabet Med 2012.