2011, Número 1
<< Anterior Siguiente >>
Rev Invest Clin 2011; 63 (1)
Síndrome coronario agudo. Fisiopatología y genética
Vargas-Alarcón G, Fragoso JM, Delgadillo H
Idioma: Español
Referencias bibliográficas: 64
Paginas: 64-74
Archivo PDF: 87.41 Kb.
RESUMEN
El síndrome isquémico coronoario agudo (SICA) se caracteriza
por un espectro de enfermedades arteriales que incluyen la
angina inestable y el infarto agudo del miocardio. En los últimos
diez años el SICA ha constituido la causa de hasta 29%
de los fallecimientos en los países industrializados, lo cual lo
convierte en la principal causa de muerte y probablemente en
el 2020 seguirá siéndolo. La fisiopatogénesis del SICA incluye
procesos oxidativos, inflamatorios y trombóticos. Diversas
moléculas participan en estos procesos incrementando o disminuyendo
el daño. Los genes que codifican para esas moléculas
han sido asociados con la enfermedad. Sin embargo, en
algunos casos se han reportado resultados inconsistentes
en algunas poblaciones. En esta revisión se discuten algunos
aspectos de la fisiopatogénesis y el papel de varios genes candidatos
involucrados en la patogénesis del SICA.
REFERENCIAS (EN ESTE ARTÍCULO)
Saez T, Suárez C, Blanco F, Gabriel R. Epidemiology of cardiovascular disease in the Spanish elderly population. Rev Esp Cardiol 1998; 51: 864-73.
Uemura K, Pisa Z. Trends in cardiovascular disease mortality in industrialized countries since 1950. World Health Stst Q 1988; 41: 155-78.
Kannel WB. Prevalence, incidence and mortality of coronary artery disease. In: Fuster V, Ross R, Topol EJ (Ed.). Atherosclerosis and coronary artery disease. Philadelphia: Lippincott- Raven; 1996, p. 15-26.
Página electrónica del Instituto Nacional de Estadística Geografía e Informática (INEGI): www.inegi.gob.mx
Marrugat J, Elosua R, Marti H. Epidemiology of schemic hearth disease in Spain: estimation of the number of cases and trends from 1997 to 2005. Rev Esp Cardiol 2002; 55: 337-46.
Hansson GK. Inflammation, atherosclerosis and Coronary Artery Disease. N Engl J Med 2005; 352: 1685-95.
Stroes E, Rabelink T. Hyperlipidemia and endothelial function. In: Born GVR, Schwartz CJ (Eds.). Vascular endothelium: Physiology, pathology and therapeutics opportunities. Stuttgar- New York: Schattauer; 1997, p. 311-28.
Harrison D. Endothelial function and oxidant stress. Clin Cardiol 1997; 20(Suppl. II): II11-II17.
Jimi S, Sakata N, Matunaga A, Takebayashi S. Low density lipoproteins bind more to type I and III collagens by negative charge-dependent mechanisms than to type IV and V collagens. Atherosclerosis 1994; 107: 109-16.
Camejo G, Olofsson SO, Lopez F, Carlsson P, Bondjers G. Identification of Apo B-100 segments mediating the interaction of low density lipoproteins with arterial proteoglycans. Arteriosclerosis 1988; 8: 368-77.
Herdener M, Heigold S, Saran M, Bauer G. Targer cell-derived superoxide anions cause efficiency and selectivity of intracellular induction of apoptosis. Free Radiac Biol Med 2000; 29: 1260-71.
Azumi H, Inoue N, Ohashi Y, Terashima M, Mori T, Fujita H, et al. Superoxide generation in directional coronary atherectomy specimens of patients with angina pectoris: important role of NADPH oxidase. Artherioscler Thromb Vasc Biol 2002; 22: 1838-44.
Channon KM. Oxidative stress and coronary plaque stability. Artherioscler Thromb Vasc Biol 2002; 22: 1751-52.
Spiekermann S, Landmesser U, Dikalov S, Bredt M, Gamez G, Tatge H et al. Electron spins resonance characterization of vascular xanthine and NADPH oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilatation. Circulation 2003; 107: 1383-9.
Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol 2003; 91: 7A-11A.
Corti R, Fuster V, Badimon JJ. Pathogenetic concepts of acute coronary syndrome. J Am Coll Cardiol 2003; 41: 7S-14S.
Libby P, Simon DI. Inflammation and thrombosis: the clot thickens. Circulation 2001; 103: 1718-20.
Ridker PM. Novel risk factors and markers for coronary disease. Adv Intern Med 2000; 45: 391-418.
Ikonomidis I, Andreotti F, Economou E, Stefanadis C, Toutuzas P, Nihoyannopoulos P. Increased proinflammatory cytokines in patients with chronic stable angina and their reduction by aspirin. Circulation 1999; 100: 793-98.
Woods A, Brull DJ, Humphries SE, Montgomery HE. Genetics of inflammation and risk of coronary artery disease: the central role of interleukin-6. Eur Heart J 2000; 21: 1574-83.
Devaraj S, Xu DY, Jialal I. C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis. Circulation 2003; 107: 398-404.
Azzawi M, Hasleton P. Tumour necrosis factor alpha and the cardiovascular system: its role in cardiac allograft rejection and heart disease. Cardiovasc Res 1999; 43: 850-59.
Dinarello CA. Interleukin 1 and interleukin 1 receptor antagonism. Blood 1991; 77: 1627-52.
Iacoviello L, Di Castelnuovo A, Gattone M, Pezzini A, Assanelli D, Lorenzet R, et al. Polymorphisms of the interleukin-1beta gene affect the risk of myocardial infarction and ischemic stroke at young age and the response of mononuclear cells to stimulation in vitro. Arterioscler Thromb Vasc Biol 2005; 25: 222-27.
Latkovskis G, Licis N, Kalnins U. C-reactive protein levels and common polymorphisms of the interleukin-1 gene cluster and interleukin-6 gene in patients with coronary heart disease. Eur J Immunogenet 2004; 31: 207-13.
Auer J, Weber T, Berent R, Lassnig E, Lamm G, Eber B. Genetic polymorphisms in cytokine and adhesion molecule genes in coronary artery disease. Am J Pharmacogenomics 2003; 3: 317-28.
Vohnout B, Di Castelnuovo A, Trotta R, D’Orazi A, Panniteri G, Montali A, et al. Interleukin-1 gene cluster polymorphisms and risk of coronary artery disease. Haematologica 2003; 88: 54-60.
Pérez-Fernández R, Kaski JC. Interleucina-10 y enfermedad coronaria. Rev Esp Cardiol 2002; 55: 738-50.
Shibata M, Endo S, Inada K, Kuriki S, Harada M, Takino T, et al. Elevated plasma levels of interleukin-1 receptor antagonist and interleukin-10 in patients with acute myocardial infarction. J Interferon Cytokine Res 1997; 17: 145-50.
Sugita T, Watarida S, Katsuyama K, Nakajima Y, Yamamoto R, Mori A. Interleukin-10 concentration in children undergoing cardiopulmonary bypass. J Thorac Cardiovasc Surg 1996; 112: 1127-28.
Domínguez-Rodríguez A, Abreu-González P, De la Rosa A, Vargas M, Ferrer J, García M. Role of endogenous interleukin- 10 production and lipid peroxidation in patients with acute myocardial infarction treated with primary percutaneous transluminal coronary angioplasty. Int J Cardiol 2005; 99: 77-81.
Zintzaras E, Kitsios G. Identification of chromosomal regions linked to premature myocardial infarction: a meta-analysis of whole-genome searches. J Hum Genet 2006; 51: 1015-21.
Farrall M, Green FR, Peden JF, Olsson PG, Clarke R, Hellenius ML, et al. Genome-wide mapping of susceptibility to coronary artery disease identifies a novel replicated locus on chromosome 17. PLoS Genet 2006; 2: e2.
Sherva R, Miller MB, Pankow JS, Hunt SC, Boerwinkle E, Mosley TH, et al. A whole-genome scan for stroke or myocardial infarction in family blood pressure program families. Stroke 2008; 39: 1115-20.
Garcia-Moll X. Inflammatory and anti-inflammatory markers in acute coronary syndromes. Ready for use in the clinical setting. Rev Esp Cardiol 2005; 58: 615-17.
Fragoso JM, Ramirez-Bello J, Cruz-Robles D, Perez-Mendez O, de la Peña A, Vargas-Alarcon G. Marcadores pro y antiinflamatorios en la enfermedad arterial coronaria y el síndrome isquémico coronario agudo. Arch Cardiol Mex 2009; 79: 54-62.
Timms AE, Crane AM, Sims AM, Cordell HJ, Bradbury LA, Abbott A, et al. The interleukin 1 gene cluster contains a major susceptibility locus for ankylosing spondylitis. Am J Hum Genet 2004; 75: 587-95.
Kang S, Kim JW, Park NH, Song YS, Park SY, Kang SB, et al. Interleukin-1 beta -511 polymorphisms and risk of cervical cancer. J Korean Med Sci 2007; 22: 110-13.
Gander ML, Fischer JE, Maly FE, von Kanel R. Effect of the G-308A polymorphism of the tumor necrosis factor (TNF-á) gene promoter site on plasma levels of TNF-á and C-reactive protein in smokers: a cross-sectional study. BMC Cardiovascular Disorders 2004; 4: 17.
Koch W, Kastrati A, Bittiger C, Mehilli J, von Beckerath N, Schoming A. Interleukin-10 and tumor necrosis factor gene polymorphisms and risk of coronary artery disease and myocardial infarction. Atherosclerosis 2001; 159: 137-44.
Tanaka C, Mannani T, Kamide K, Takiuchi S, Kokubo Y, Katsuya T, et al. Single nucleotide polymorphisms in the interleukin- 6 gene associated with blood pressure and atherosclerosis in Japanese general population. Hypertens Res 2005; 28: 35-41.
Qi Lu, van Dam RM, Meigs JB, Manson JE, Hunter D, Hu FB. Genetic variation in IL-6 gene and type 2 diabetes: tagging- SNP Haplotype analysis in large-scale case-control study and meta-analysis. Hum Mol Genet 2006; 15: 1914-20.
Govan VA, Carrara H, Sachs JA, Hoffman M, Stanczuk G, Williamson AL. Ethnic differences in allelic distribution of IFN-γ in South African woman but no link with cervical cancer. J Carcinog 2003; 2: 3.
Qi S, Cao B, Jiang M, Xu Ch, Dai Y, Li K, et al. Association of the -183 polymorphism in the IFN-γ gene promoter with hepatitis B virus infection in the Chinese population. J Clin Lab Anal 2005; 19: 276-81.
Bream JH, Ping A, Zhang X, Winkler C, Young HA. A single polymorphism in the proximal IFN-gamma promoter alters control of gene transcription. Genes and Immunity 2002; 3: 165-9.
Yokota M, Ichihara S, Tong-Lang L, Nakashima N, Yamada Y. Association of T29-C polymorphism of the transforming growth factor-β1 gene with genetic susceptibily to myocardial infarction in Japanese. Circulation 2000; 101: 2783-87.
Peterson MC. Circulating transforming growth factor β1: a partial molecular explanation for associations between hypertension, diabetes, obesity, smoking and human disease involving fibrosis. Med Sci Monit 2005; 11: RA229-RA232.
Marchand L, Haiman Ch, van den Berg D, Wilkens LR, Kolonel LN, Henderson BE. T29C polymorphism in the transforming growth factor B1 gene and postmenopausal breast cancer risk: The multiethnic cohort study. Cancer Epidemiol Biomarkers Prev 2004; 13: 412-15.
Celedon JC, Lange Ch, Raby BA, Litonjua AA, Palmer LJ, De- Meo DL, et al. The transforming growth factor-B1 (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD). Hum Mol Genet 2004; 13: 1649-56.
Parslow TG, Stites DP, Terr AI, Imbodem JB. Inmunología básica y clínica. 10a Ed. Mexico-Santafe de Bogotá: Editorial Manual Moderno; 2001: 166-87.
Paul WE. Fundamental Immunology. 4th Ed. New York: Ed. Lippincott-Raven; 1999: 741-811.
Francis SE, Camp NJ, Dewberry RM, Gunn J, Syrris P, Carter ND, et al. Interleukin-1 receptor antagonist gene polymorphism and coronary artery disease. Circulation 1999; 99: 861-66.
Tolusso B, Pietrapertosa D, Morelli A, De Santis M, Gremese E, Farina G, et al. IL-1B and IL-1RN gene polymorphisms in rheumatoid arthritis: relationship with protein plasma levels and response to therapy. Pharmacogenomics 2006; 7: 683-95.
Iacoviello L, Donati MB, Gattone M. Possible different involvement of interleukin-1 receptor antagonist gene polymorphism in coronary single vessel disease and myocardial infarction. Circulation 2000; 101: E193.
van Minkelen R, Wettinger SB, de Visser MC, Vos HL, Reitsma PH, Rosendaal FR, et al. Haplotypes of the interleukin-1 receptor antagonist gene, interleukin-1 receptor antagonist mRNA levels and the risk of myocardial infarction. Atherosclerosis 2009; 203: 201-05.
Hurme M, Santtila S. IL-1 receptor antagonist (IL-1Ra) plasma levels are coordinately regulated by both IL-1Ra and IL-1beta genes. Eur J Immunol 1998; 28: 2598-602.
Ghazouani L, Khalifa SB, Abbound N, Addad F, Khalfallah AB, Brahim N, et al. -308G > a and -1031 T > C tumor necrosis factor gene polymorphisms in Tunisian patients with coronary artery disease. Clin Chem Lab Med 2009; 47: 1247-51.
Morange PE, Tregouet DA, Godefroy T, Saut N, Bickel C, Rupprecht HJ, et al. Polymorphisms of the tumor necrosis factor - alpha (TNF) and the TNF-alpha converting enzyme (TACE/ ADAM17) gene in relation to cardiovascular mortality: the AtheroGene study. J Mol Med 2008; 86: 1153-61.
Sbarsi I, Falcone C, Boiocchi C, Campo I, Zorzetto M, De Silvestri A, et al. Inflammation and atherosclerosis: the role of the TNF and TNF receptors polymophisms in coronary artery disease. Int J Immunopathol Pharmacol 2007; 20: 145-54.
Pasqui AL, Di Renzo M, Bova G, Maffei S, Pompella G, Auteri A, et al. Pro-inflammatory/anti-inflammatory cytokine imbalance in acute coronary syndromes. Clin Exp Med 2006; 6: 38-44.
Wang YN, Che SM, Ma AQ. Clinical significance of serum cytokines IL-1beta, sIL-2R, IL-6, TNF-alpha, and INF-γ in acute coronary syndrome. Chin Med Sci J 2004; 19: 120-24.
Girndt M, Köhler H. Interleukin-10 (IL-10): an update on its relevance for cardiovascular risk. Nephrol Dial Transplnat 2003; 18: 1976-79.
Koch O, Rockett K, Jallow M, Pinder M, Sisay-Joof F, Kwiatkwski D. Investigation of malaria susceptibility determinants in the INFG/IL26/IL22 genomic region. Genes Immun 2005; 6: 312-18.
Fragoso JM, Delgadillo H, Llorente L, Chuquiure E, Juárez-Cedillo T, Vallejo M, et al. Interleukin 1 and interleukin 1 receptor antagonist polymorphisms are associated with the risk of developing acute coronary syndrome. Immunol Letter 2010; 133: 106-11.