2010, Número 1
<< Anterior Siguiente >>
Rev Invest Clin 2010; 62 (1)
RNA de interferencia y su potencial terapéutico en cáncer
Vázquez-Vega S, Contreras-Paredes A, Lizano-Soberón M, Amador-Molina A, García-Carrancá A, Sánchez-Suárez LP, Benítez-Bribiesca L
Idioma: Español
Referencias bibliográficas: 75
Paginas: 81-90
Archivo PDF: 86.74 Kb.
RESUMEN
Los RNAs pequeños pertenecen a una estirpe de moléculas recientemente
descubiertas. Estas moléculas están compuestas
de RNA de doble cadena de 19 a 31 nucleótidos. Tienen dos características
principales que las hacen únicas. La primera es
que no codifican para proteínas y la segunda es que su acción
de interferencia ocurre postranscripcionalmente con el RNAm
(RNA mensajero). Dicha acción de interferencia es el sello que
las distingue y por ello se les conoce como RNA de interferencia
o RNAi. De manera general hay tres subclases, de las cuales
los miRNA y los siRNA han sido las más estudiadas. Los
RNA de interferencia participan en una miríada de funciones
celulares principalmente a través de la modulación de la expresión
de los genes. Debido a estas capacidades se ha pensado en
utilizarlos como armas terapéuticas en un número de enfermedades
incluyendo al cáncer. Se sabe que tanto los miRNA
como los siRNA participan en la carcinogénesis ya sea inhibiendo
genes supresores o estimulando oncogenes. También
se ha demostrado que la manipulación de los RNAi en líneas
celulares y modelos animales, pueden revertir el fenotipo maligno
y metastásico. A la fecha son pocas las pruebas clínicas
en las que se emplean a los RNAi como agentes terapéuticos,
algunas de ellas han tenido resultados exitosos y viables. Es
previsible que en un futuro cercano el tratamiento del cáncer
con RNAs pequeños tenga una amplia aplicación, una vez que
muchos de los obstáculos para su aplicación sistemática sean
sobrepasados.
REFERENCIAS (EN ESTE ARTÍCULO)
Chu CY, Rana TM. Small RNAs: regulators and guardians of the genome. J Cell Physiol 2007; 213: 412-19.
Dragomira N, Draga T. RNA interference-Regulation and application in Oncology. J Cancer Mol 2008; 4: 67-77.
Baulcombe D. RNA silencing in plants. Nature 2004; 431: 356-63.
Tomari Y, Zamore PD. Perspective: machines for RNAi. Genes Dev 2005; 19: 517-29.
Vázquez-Ortiz G, Piña-Sánchez P, Salcedo M. Grandes alcances de los RNAs pequeños, RNA de interferencia y microRNA. Rev Invest Clín 2006; 58: 335-49.
Fire A, Xu S, Montgomery M, Kostas S, Driver S, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806-11.
Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494-8.
Caplen N, Parrish S, Imani F, Morgan R. Specific inhibition of gene expression by small double-stranded RNAs invertebrate and vertebrate systems. Proc Natl Acad Sci USA 2001; 98: 9742-7.
Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature 2004; 431: 371-8.
Zhang B, Pan X, Cobb G, Anderson T. microRNAs as oncogenes and tumor suppressors. Dev Biol 2007; 302: 1-12.
Winter J, Stephanie Jung, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology 2009; 11: 228-34.
Tili E, Michaille JJ, Gandhi V, Plunkett W, Sampath D, Calin GA. miRNAs and their potential for use against cancer and other diseases. Future Onco 2007; 3: 521-37.
Bartel DP. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009; 136; 23: 215-33.
Floyd SK, Bowman JL. Gene regulation: ancient microRNA target sequences in plants. Nature 2004; 428: 485-6.
Cullen BR. Viruses and microRNAs. Nat Genet 2006; 38(Suppl.): S25-S30.
Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3’UTR evolution. Cell 2005; 123: 1133-46.
Sun M, Hurst LD, Carmichael GG, Chen J. Evidence for a preferential targeting of 3’-UTRs by cis-encoded natural antisense transcripts. Nucleic Acids Res 2005; 33: 5533-43.
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843-54.
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001; 294: 797-9.
Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001; 294: 797-9.
Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001; 294: 862-4.
Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000; 408: 86-9.
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006; 34: D140-D144.
Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res 2008; 36: D154-D158.
Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005; 120: 21-4.
http://microrna.sanger.ac.uk/.
Lee YS, Dutta A. MicroRNAs in Cancer. Annu Rev Pathol Mech Dis 2009; 4: 199-227.
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403: 901-06.
Cheng A, Byrom M, Shelton J, Ford L. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 2005; 33: 1290-7.
Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524-9.
31, Visone R, Croce CM. MiRNAs and Cancer. Am J Pathol 2009; 174: 1131-8.
Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259-69.
Hutvágner G, Simard MJ, Mello CC, Zamore PD. Sequence-specific inhibition of small RNA function. PLoS Biol 2004; 2(4): E98.
Meister G, Landthaler M, Dorsett Y, Tuschl T. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 2004; 10: 544-50.
Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005; 438: 685-9.
Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nature Reviews Genetics 2009; 10: 704-14.
Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944-9.
Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64: 3753-6.
Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635-47.
Lu J. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834-8.
Tong AW. Small RNAs and non-small cell lung cancer. Curr Mol Med 2006 6: 339-49.
Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, et al. Therapeutic microRNA Delivery Suppresses Tumorigenesis in a Murine Liver Cancer Model Cell 2009; 137: 1005-17.
Pai SI, Lin YY, Macaes B, Meneshian A, Hung CF, Wu TC. Prospects of RNA interference therapy for cancer. Gene Ther 2006; 6: 464-77.
Tan FL, Yin JQ. Application of RNAi to cancer research and therapy. Front Biosci 2005; 10: 1946-60.
Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nature Reviews Genetics 2007; 8: 173-84.
Wohlbold L, van der Kuip H, Miething C, Vornlocher HP, Knabbe C, Duyster J, Aulitzky WE. Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571). Blood 2003; 102: 2236-9.
Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activates anti-apoptotic pathways. Science 2004; 305: 1163-7.
Zhang M, Zhang X, Bai CX, Chen J, Wei MQ. Inhibition of epidermal growth factor receptor expression by RNA interference in A549 cells. Acta Pharmacol Sin 2004; 25: 61-7.
Yang G, Cai KQ, Thompson-Lanza JA, Bast RC Jr, Liu J. Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. J Biol Chem 2004; 279: 4339-45.
Kaelin WG Jr. Functions of the retinoblastoma protein. Bioessays 1999; 21: 950-8.
Zur Hausen H. The search for infectious causes of human cancers: where and why. Virology 2009; 392: 1-10.
Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nature Reviews Cancer. 2009; 9: 701-13.
Iorns E, Lord CJ, Turner N, Ashworth A. Utilizing RNA interference to enhance cancer drug discovery. Nature Reviews Drug Discovery 2007; 6: 556-8.
Putral LN, Bywater MJ, Gu W, Saunders NA, Gabrielli BG, Leggatt GR, McMillan NA. RNA interference against human papillomavirus oncogenes in cervical cancer cells results in increased sensitivity to cisplatin. Mol Pharmacol. 2005; 68: 1311-9.
Kuner R, Vogt M, Sultmann H, Buness A, Dymalla S, Bulkescher J, et al. Identification of cellular targets for the human papillomavirus E6 and E7 oncogenes by RNA interference and transcriptome analyses. J Mol Med 2007; 85: 1253-62.
Li S, Crothers J, Haqq CM, Blackburn EH. Cellular and gene expression responses involved in the rapid growth inhibition of human cancer cells by RNA interference-mediated depletion of telomerase RNA. J Biol Chem 2005; 280: 23709-17.
Takei Y, Kadomatsu K, Yuzawa Y, Matsuo S, Muramatsu T. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res 2004; 64: 3365-70.
Liu N, Bi F, Pan Y, Sun L, Due Y, Shi Y, et al. Reversal of the malignant phenotype of gastric cancer cells by inhibition of RhoA expression and activity. Clin Cancer Res 2004; 10: 6239-47.
Chen Y, Stamatoyannopoulos G, Song CZ. Downregulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res 2003; 63: 4801-04.
Liang Z, Yoon Y, Votaw J, Goodman MM, Williams L, Shim H. Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res 2005; 65: 967-71.
Nicoloso MS, Spizzo R, Shimizu M, Rossi S. and Calin G A. MicroRNAs—the micro steering wheel of tumour metastases. Nature Reviews Cancer 2009; 9: 293-302.
Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 2001; 7: 1118-22.
Yue FY, Dummer R, Geertsen R, Hofbauer G, Laine E, Manolio S, Burg G. Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules. Int J Cancer 1997; 71: 630-7.
Wu H, Hait WN, Yang JM. Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res 2003; 63: 1515-9.
Duan Z, Brakora KA, Seiden MV. Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Mol Cancer Ther 2004; 3: 833-8.
Huang Y, Anderle P, Bussey KJ, Barbacioru C, Shankavaram U, Dai Z, et al. Membrane transporters and channels: role of the transportome in cancer chemosensitivity and chemoresistance. Cancer Res 2004; 64: 4294-301.
Chang IY, Kim MH, Kim HB, Lee DY, Kim SH, Kim HY, You HJ. Small interfering RNA-induced suppression of ERCC1 enhances sensitivity of human cancer cells to cisplatin. Biochem Biophys Res Commun 2005; 327: 225-33.
Collis SJ, Swartz MJ, Nelson WG, DeWeese TL. Enhanced radiation and chemotherapy-mediated cell killing of human cancer cells by small inhibitory RNA silencing of DNA repair factors. Cancer Res 2003; 63: 1550-4.
Michels S, Schmidt-Erfurth U, Rosenfeld PJ. Promising new treatments for neovascular age-related macular degeneration. Expert Opin Investig Drugs 2006; 15: 779-93.
An DS, Donahue RE, Kamata M, Poon B, Metzger M, Mao SH, et al. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc Natl Acad Sci USA 2007; 104: 13110-5.
DeVincenzo J, Cehelsky JE, Alvarez R, Elbashir S, Harborth J, Toudjarska I, et al. Evaluation of the safety, tolerability and pharmacokinetics of ALN-RSV01, a novel RNAi antiviral therapeutic directed against respiratory syncytial virus (RSV). Antiviral Res 2008; 77: 225-31.
Fetz V, Bier C, Habtemichael N, Schuon R, Schweitzer A, Kunkel M, et al. Inducible NO synthase confers chemoresistance in head and neck cancer by modulating survivin. Int J Cancer 2009; 124: 2033-41.
Matsukura S, Jones PA, Takai D. Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleic Acids Res 2003; 31: e77.
Williams Bryan RG. Signal Integration via PKR. Sci STKE 2001; 89: re2.
Pachuk CJ, Ciccarelli RB, Samuel M, Bayer ME, Troutman RD, Zurawski DV, et al. Characterization of a new class of DNA delivery complexes formed by the local anesthetic bupivacaine. Biochim Biophys Acta 2000; 1468: 20-30.