2010, Número 3
<< Anterior Siguiente >>
Rev Invest Clin 2010; 62 (3)
Estado actual de la preeclampsia en México: de lo epidemiológico a sus mecanismos moleculares
Sánchez-Rodríguez EN, Nava-Salazar S, Morán C, Romero-Arauz JF, Cerbón-Cervantes MA
Idioma: Español
Referencias bibliográficas: 70
Paginas: 252-260
Archivo PDF: 104.90 Kb.
RESUMEN
La preeclampsia (PE) es una de las complicaciones más severas
del embarazo, cuya etiología es desconocida. Esta revisión
aborda aspectos generales y de diagnóstico de la PE, así como
aspectos epidemiológicos en población mexicana, en particular
la experiencia del Instituto Mexicano del Seguro Social. Nos
enfocamos también al análisis y actualización de dos de las
principales hipótesis que tratan de explicarla: la inmunológica
y la de isquemia placentaria. Diversos estudios sugieren que
las células asesinas naturales (NK) participan en el proceso de
remodelación vascular de la placenta y en el desarrollo normal
de ésta. Análisis genéticos indican que los receptores KIR presentes
en las células NK, podrían participar en la susceptibilidad
a la enfermedad. En esta revisión discutimos resultados
recientes de nuestro grupo que muestran la persistencia de las
células NK en la decidua materna, al final del embarazo,
así como los genotipos para los receptores KIR en mujeres
mexicanas con embarazos normoevolutivos y con PE. Se sabe
que esta enfermedad se caracteriza por una deficiente placentación,
hipoxia y un aumento en la concentración de factores
anti-angiogénicos relacionados con la sobre-expresión del factor
inducible por hipoxia 1 alfa (HIF1-alfa). Discutimos avances
de nuestros resultados sobre la regulación de HIF y dos de
los polimorfismos de este gen, en mujeres con PE en población
mexicana.
REFERENCIAS (EN ESTE ARTÍCULO)
Khan KS, Wojdyla D, Say L, Gülmezoglu AM, Van Look PF. WHO analysis of causes of maternal death: a systematic review. Lancet 2006; 367: 1066-74.
Chandiramani M, Shennan A. Hypertensive disorders of pregnancy: A UK based perspective. Curr Opin Obstet Gynecol 2008; 20: 96-101.
Lain KY, Roberts JM. Contemporary concepts of the pathogenesis and management of preeclampsia. JAMA 2002; 287: 3183-6.
Von Dadalszen P, Magee L. What matters in preeclampsia are the associated adverse outcomes: the view from Canada. Curr Opin Obstet Gynecol 2008; 20: 110-5.
Secretaría de Salud. Lineamiento Técnico. Prevención, diagnóstico y manejo de la preeclampsia/eclampsia. 4a. Ed. México, DF. 2007.
Velasco ME, Navarrete HE. Mortalidad materna en el IMSS, 1991-2005. Un periodo de cambios. Rev Med Inst Mex Seguro Soc 2006; 44: S121-S128.
Sibai BM. Biomarker for hypertension-preeclampsia: are we close yet? Am J Obstet Gynecol 2007; 197: 1-3.
Moran C, Sandoval T, Duque X, González S, Moran S, Bermudez JA. Increased insulin levels independent of gestational overweighting women with preeclampsia. Arch Med Res 2006; 37: 749-54.
Roberts J, Gammill H. Preeclampsia recent insights. Hypertension 2005; 46: 1243-61.
Norwitz ER, Robinson JN, Reptke J. Prevention of preeclampsia: is it possible? Clin Obstet Gynecol 1999; 42: 436-54.
Sibai B, Dekker G, Kupferminc M. Preeclampsia. Lancet 2005; 365: 785-97.
Barton JR, Sibai BM. Prediction and prevention of recurrent preeclampsia. Obstet Gynecol 2008; 112: 359-72.
American College of Obstetricians and Gynecologists. Diagnosis and management of preeclampsia and eclampsia. ACOG Practice Bulletin No 33. Obstet Gynecol 2002; 99: 159-67.
Tuffnell DJ, Shennan AH, Waugh JJ, Walker JJ. The management of severe pre-eclampsia/eclampsia. Royal College of Obstetricians and Gynecologists, Guideline 10(A), London (UK): 2006, p. 1-11.
Coordinación de Salud Reproductiva y materno Infantil. Norma Técnico-Médica para la prevención y manejo de la preeclampsia- eclampsia. México: Instituto Mexicano del Seguro Social; 1995, p. 7-33.
Romero AJF, Tena AG. Epidemiología, clasificación y factores de riesgo en preeclampsia. En: Romero AJF, Tena AG, Jiménez SGA (eds.). Preeclampsia. Enfermedades hipertensivas del embarazo. Cap. 1. México: McGrawHill; 2009, p.1-15.
Velasco V, Navarrete E, Cardona J, Madrazo M. Mortalidad materna por preeclampsia-eclampsia en el Instituto Mexicano del Seguro Social 1987-96. Rev Med Inst Mex Seguro Soc 1997; 35: 451-5.
Scifres CM, Nelson DM. Intrauterine growth restriction, human placental development and trophoblasts cell death. J Physiol 2009; 587: 3453-8.
Ananth VC, Vintzileos MA. Medically indicated preterm birth: Recognizing the importance of the problem. Clin Perinatol 2008; 35: 53-67.
Kopcow D, Karumanchi A. Angiogenic factors and natural killer (NK) cells in the pathogenesis of preeclampsia. J Reprod Immunol 2007; 76: 23-9.
Davison MJ, Homuth V, Jeyabalan A, Conrad PK, Karumanchi AS, Quaggin S, et al. New aspects in the pathophysiolgy of preeclampsia. J Am Soc Nephrol 2004; 15: 2440-8.
Dekker GA, Robillard PY. Preeclampsia: A couple´s disease with maternal and fetal manifestations. Curr Pharm Des 2005; 11: 699-710.
Caniggia I, Winter J, Lye S, Post M. Oxigen and placental development during the first trimester: Implications for the patophysiology of pre-eclampsia. Placenta 2000; 21(Suppl. A): S25-S30.
Moffet KA. Natural Killer cells and pregnancy. Nat Rev Immunol 2002; 2: 656-63.
Di Santo PJ. Functionally distinct NK cell subsets: Developmental origins and biological implications. Eur J Immunol 2008; 38: 2927-68.
Koopman L, Kopcow H, Boyson J, Orange J, Chatz F, Masch R, et al. Human decidual NK cells are unique NK cell subset with immunomodulatory potential. J Exp Med 2007; 198: 1201-12.
Williams PJ, Bulmer JN, Searle RF, Innes BA, Robson SC. Altered decidual leukocyte in the placental bed in preeclampsia and fetal growth restriction: a comparison with late normal pregnancy. Reproduction 2009; 138: 177-84.
Li DX, Charnock-Jones S, Zhang E, Hiby S, Shazia M, Day K, et al. Angiogenic growth factors messenger ribonucleic acids in uterine Natural Killer cells. J Clin Endocrinol Metab 2001; 86: 1823-34.
Tabiasco J, Rabot M, Aguerre-Girr A, El Costa H, Berrebi A, Parant O, et al. Human decidual NK cells: unique phenotype and functional properties-A review. Placenta 2006; 27 suppl A: S34-S39.
Jacob H, Goldman-Wohl D, Hamani Y, Prus D, Arnon T, Gazit R, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 2006; 12: 1065-74.
Smith SD, Dunk EC, Aplin DJ, Harris KL, Jones LR. Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am J Pathol 2009; 174: 1959-71.
Khakoo S, Carrington M. KIR and disease: a model system or system of models?. Immunol Rev 2006; 214: 186-201.
Trowsdale J, Barten R, Haude A, Stewart AC, Beck S, Wilson M. The genomic context of Natural Killer receptor extended gene families. Immunol Rev 2001; 181: 20-38.
Bashirova A, Martin P, Mc Vicar W, Carrington M. The killer immunoglobulin like receptor gene cluster: Tuning the genome for defense. Annu Rev Genomics Hum Genet 2006; 7: 277- 300.
Carrington M, Martin MP. The impact of variation at the KIR gene cluster on human disease. Curr Top Microbiol Immunol 2006; 298: 225-57.
Hiby ES, Walker JJ, O’Shaughnessy MO, Redman WG, Carrington JT, Moffet A. Combinations of maternal KIR and fetal HLA-C genes influence the risk of Preeclampsia and reproductive success. J Exp Med 2004; 200: 957-65.
Rajakumar A, Conrad K. Expression, ontogeny, and regulation of hypoxia-inducible transcription factors in the human placenta. Biol Reprod 2000; 63: 559-69.
Caniggia I, Winter J.L. Hypoxia inducible factor-1: Oxygen regulation of trophoblast differentiation in normal and preeclamptic Pregnancies-A Review. Placenta 2002; 16(Suppl.) A: S47.S57.
Cross J. Placental function in development and disease. Reprod Fertil Dev 2006; 18: 71-6.
Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoie tin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992; 12: 5447-54.
Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997; 18: 4-25.
Reynolds LP, Redmer DA. Angiogenesis in the placenta. Biol Reprod 2002; 64: 1033-44.
Genbacev O, Krtolica A, Kaelin W, Fisher S.J. Human cytotrophoblast expression of the von Hippel–Lindau protein is downregulated during uterine invasion in situ and upregulated by hypoxia in vitro. Dev Biol 2001; 233: 526-36.
Caniggia I, Mostachfi H, Winter J, Gassmann M, Lye SJ, Kuliszewski M, et al. Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFbeta(3). J Clin Invest 2000; 105: 577-87.
Rajakumar A, Whitelock A, Weissfeld L, Daftary A, Markovic N. Selective overexpression of the hypoxia-inducible transcription factor, HIF-2a, in placentas from women with preeclampsia. Biol Reprod 2001; 64: 499-506.
Zhou Y, Damsky CH, Fisher SJ. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J Clin Invest 1997; 99: 2152-64.
Zhou Y, McMaster M, Woo K, Janatpour M, Perry J, Karpanen T, et al. Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am J Pathol 2002; 160: 1405-23.
Venkatesha S, Toporsian M, Lam C, Hanai JI, Mammoto T, Kim YM, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 2006; 12: 642-9.
Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 2004; 350: 672-83.
Levine RJ, Lam C, Qian C, Yu KF, Maynard SE, Sachs BP, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 2006; 355: 992- 1005.
Kaelin WG. Proline hydroxylation and gene expression. Annu Rev Biochem 2005; 74: 115-28.
Liu YV, Semenza GL. RACK1 vs. HSP90: competition for HIF-1 alpha degradation vs. stabilization. Cell Cycle 2007; 6: 656-9.
Koh MY, Powis G. HAF: the new player in oxygen-independent HIF-1alpha degradation. Cell Cycle 2009; 8: 1359-66.
Hogenesch JB, Chan WK, Jackiw VH, Brown RC, Gu YZ, Pray-Grant M, et al. Characterization of a subset of the basichelix- loop-helix-PAS superfamily that interacts with components of the dioxin signalling pathway. J Biol Chem 1997; 272: 8581-93.
Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogaza K, et al. Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: Their stabilization and redox signal-induced interaction with CBP/p300. EMBO J 1999; 18: 1905–14.
Stebbins C, Kaelin Jr W, Pavletich N. Structure of the VHL – elongin C – elongin B complex: Implications for VHL tumor suppressor function. Science 1999; 284: 455-61.
Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIF-alpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science 2001; 292: 464-8.
Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ. Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J 2001; 20: 5197-206.
Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia– inducible factor 1a is mediated by an oxygen-dependent degradation domain via the ubiquitin-proteosome pathway. Proc Natl Acad Sci USA 1998; 95: 7987-92.
Salceda S, Caro J. Hypoxia- inducible factor 1a (HIF-1a) is rapidly degraded by the ubiquitin-proteosome system under normoxia conditions. J Biol Chem 1997; 272: 22642-7.
Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 2002; 295: 858-61.
Rajakumar A, Doty K, Daftary A, Markovic N, Conrad KP. Expression of von Hippel Lindau (pVHL) protein in placentae from normal pregnant women and women with preeclampsia. Placenta 2006; 27: 411-21.
Rajakumar A, Michael HM, Daftary A, Jeyabalan A, Gilmour C, Conrad KP. Proteasomal activity in placentas from women with preeclampsia and intrauterine growth restriction: implications for expression of HIF-alpha proteins. Placenta 2008; 29: 290-9.
Yamada N, Horikawa Y, Oda N, Lizuka K, Shihara N, Kishi S, et al. Genetic variation in the HIF-1a gene is associated with type 2 diabetes in Japanese. J Clin Endocrinol Metab 2005; 90: 5841-7.
Tanimoto K, Yoshiga K, Eguchi H, Kaneyasu M, Ukon K, Kumazaki T, et al. Hypoxia-inducible factor-1a polymorphisms associated with enhanced transactivation capacity, implying clinical significance. Carcinogenesis 2003; 24: 1779-83.
Percy M, Mooney S, McMullin MF, Flores A, Lappin T, Lee F. A common polymorphism in the oxygen-dependent degradation (ODD) domain of hypoxia inducible factor-1a (HIF-1a) does not impair Pro-564 hydroxylation. Mol Cancer 2003; 2: 31-7.
Bos R, Zhong H, Hanrahan CF, Mommers EC, Semenza GL, Pinedo HM. Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J Natl Cancer Inst 2001; 93: 309-14.
Koukourakis MI, Papazoglou D, Giatromanolaki A, Panagopoulos I, Maltezos E, Harris AL. C2028T polymorphism in exon 12 and dinucleotide repeat polymorphism in intron 13 of the HIF-1alpha gene define HIF-1alpha protein expression in non-small cell lung cancer. Lung Cancer 2006; 53: 257-62.
Hebert C, Norris K, Parashar P, Ord R, Nikitakis N, Sauk J. Hypoxia-inducible factor-1á polymorphisms and TSC1/2 mutations are complementary in head and neck cancers. Mol Cancer 2006; 5: 1-11.
Heino S, Kaare M, Andersson S, Laivuori H. Non-synonymous sequence variants within the oxygen-dependent degradation domain of the HIF1A gene are not associated with pre-eclampsia in the Finnish population. BMC Med Genet 2008; 9: 96-101.