2012, Número 2
<< Anterior Siguiente >>
Rev Endocrinol Nutr 2012; 20 (2)
Ritmicidad biológica de la secreción de ghrelina, GH e IGF-1, y su regulación por la alimentación
Arellanes-Licea E, Díaz-Muñoz M
Idioma: Español
Referencias bibliográficas: 124
Paginas: 74-87
Archivo PDF: 486.37 Kb.
RESUMEN
Los organismos presentan un mecanismo adaptativo y varias de sus funciones están sincronizadas a factores ambientales, también poseen relojes biológicos que de forma endógena estiman el tiempo. El más importante de estos factores es el ciclo geofísico de rotación de la Tierra. En consecuencia, funciones como el ciclo sueño-vigilia y la secreción de diversas hormonas exhiben un ritmo que, dado su período, se denomina circadiano. Existe una relación entre la alimentación, los órganos que participan en la ingesta y el metabolismo y la fisiología circadiana. Esta revisión se basa en un eje hormonal implicado en este proceso, dado que la ghrelina secretada durante el ayuno promueve la secreción de la hormona de crecimiento (GH) y ésta, la síntesis y secreción deI IGF-1. En conjunto, su función recae en la regulación del apetito, la conducta, el crecimiento y proliferación celular, con un papel preponderante en la regulación metabólica de nutrimentos. Cuando se restringe el acceso al alimento, se favorece la expresión de un reloj biológico denominado oscilador sincronizado por los alimentos. La emergencia de este oscilador resulta en una condición reostática en la que se modifican las señales de hambre, saciedad y las bioquímicas. Es probable que la actividad del eje hormonal ghrelina, GH-IGF-1, participe en su fisiología. El delicado balance entre la ingesta, las señales orexigénicas y anorexigénicas, la actividad física, el metabolismo central y periférico, y la sincronización interna son parte del proceso de pérdida, estabilidad o ganancia de peso y potencialmente pueden incidir sobre la actual epidemia de obesidad y el síndrome metabólico.
REFERENCIAS (EN ESTE ARTÍCULO)
Golombek D. Introducción: La máquina del tiempo. En: Golombek D, compilador. Cronobiología Humana; ritmos y relojes biológicos en la salud y en la enfermedad. Buenos Aires, Argentina: Universidad Nacional de Quilmes Ediciones; 2002: 19-29.
Koukkari WL, Sothern RB. General features of rhythms: terminology and characteristics. In: Koukkari WL, Sothern RB, eds. Introducing biological rhythms. USA: Springer; 2006: 19-65.
Aschoff J. A survey on biological rhythms. In: Aschoff J, ed. Biological rhythms. Handbook of Behavioural Neurobiology. Vol. 4. New York: Plenum Press; 1981: 3-10.
Pittendrigh CS. Temporal organization: Reflections of a Darwinian clock-watcher. Annu Rev Physiol 1993; 55: 17-54.
Refinetti R. Circadian Physiology. USA: CRC PressTaylor & Francis; 2006: 105-213.
Dibner C, Schibler U, Albrecht U. The mammalian circadian timming system. Annu Rev Physiol 2010; 72: 517-549.
Mrosovsky N. Rheostasis: the physiology of change. New York: Oxford University Press; 1990.
Gruart A, Delgado JM, Escobar C, Aguilar Roblero R. Los relojes que gobiernan la vida. Colecc. La ciencia para todos. Vol. 188. México, DF; Fondo de Cultura Económica; 2002.
Aguilar-Roblero R. Cronostasia: más allá del modelo de los dos procesos en la regulación del sueño. Av Med Sueño en Lat 2007; 3: 5-10.
Menaker M. Biological clocks. BioScience 1969; 19: 681-689.
Herzog ED. Neurons and networks in daily rhythms. Nature Rev Neurosci 2007; 8: 790-802.
Buijs RM, Kalsbeek A. Hypothalamic integration of central and peripheral clocks. Nature Rev Neurosci 2001; 2: 521-526.
Guido ME, de la Iglesia H. Bases moleculares de la cronobiología. En: Golombek D, compilador. Cronobiología Humana; ritmos y relojes biológicos en la salud y en la enfermedad. Buenos Aires, Argentina: Universidad Nacional de Quilmes Ediciones; 2002: 43-66.
Lowrey PL, Takahashi JS. Mammalian circadian biology: Elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 2004; 5: 407–441.
Moore RY. The organization of the human circadian timing system. Prog Brain Res 1992; 93: 101-117.
Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Nat Acad Sci (USA) 1972; 69: 1583-1586.
Aguilar-Roblero R, Granados-Fuentes D, Caldelas I, Salazar-Juárez A, Escobar C. Bases neurales de la cronobiología humana: el sistema circadiano distribuido. En: Golombek D, compilador. Cronobiología Humana; ritmos y relojes biológicos en la salud y en la enfermedad. Buenos Aires, Argentina: Universidad Nacional de Quilmes Ediciones; 2002: 67-83.
Morris CJ, Aeschbach D, Scheer FA. Circadian system, sleep and endocrinology. Mol Cell Endocrinol 2011. doi:10.1016/j.mce.2011.09.003
Bellet MM, Sassone-Corsi P. Mammalian circadian clock and metabolism–the epigenetic link. J Cell Sci 2010; 123: 3837-3848.
Cermakian N, Boivin DB. The regulation of central and peripheral circadian clocks in humans. Obes Rev 2009; 10: 25-36.
Green CB, Takahashi JS, Bass J. The meter of metabolism. Cell 2008; 134: 728-742.
Kojima M, Hosoda H, Yate Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone releasing acylated peptide from stomach. Nature 1999; 402: 656-660.
Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 2008; 132: 387-396.
Hosoda H, Kangawa K. Ghrelin measurement: present and perspectives. In: Ghigo E. Ghrelin. USA: Kluwer Academic Publishers; 2004: 225-236.
Kanamoto N, Akamizu T, Tagami T, Hataya Y, Moriyama K, Takaya K et al. Genomic structure and characterization of the 5’-flanking region of the human ghrelin gene. Endocrinology 2004; 145: 4144-4153.
Li J, Yi SQ, Wang HX, Yi N, Ogawa Y, Ozaki N, Itoh M. Immunolocalization of ghrelin in the stomach of Sprague-Dawley rat. Anat Histol Embryol 2010; 40: 95-99.
Zhang JV, Ren PG, Avsian-Kretchmer O, Luo CW, Rauch R, Klein C, Hsueh AJ. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science 2005; 310: 996-999.
Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001; 50: 1714-1719.
Cummings DE, Scott Frayo R, Marmonier C, Aubert R, Didier C. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. Am J Physiol Endocrinol Metab 2004; 287: E297-E304.
Murakami N, Hayashida T, Kuroiwa, K, Nakahara K, Ida T, Mondal MS et al. Role of central ghrelin in food intake and secretion profile of stomach ghrelin in rats. J Endocrinol 2002; 174: 283-288.
Bodosi B, Gardi J, Hajdu I, Szentirmai E, Obal F Jr, Krueger JM. Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am J Physiol Regul Integr Comp Physiol 2004; 287: R1071-R1079.
Toshinai K, Mondal MS, Nakazato M, Date Y, Murakami N, Kojima M et al. Upregulation of ghrelin expression in the stomach upon fasting, insulin-induced hypoglycemia, and leptin administration. Biochem Biophys Res Commun 2001; 5: 1220-1225.
Stanley S, Wynne K, McGowan B, Bloom S. Hormonal regulation of food intake. Physiol Rev 2005; 85: 1131-1158.
Le Roith D, Bondy C, Yakar S, Liu JL, Butler A. The somatomedin hypothesis: 2001. Endocrine Rev 2001; 22: 53-74.
Wells T. Ghrelin - defender of fat. Prog Lip Res 2009; 48: 257-274.
Veldhuis JD, Bowers CY. Integrating GHS into the ghrelin system. Intl J Pep 2010; 1-40.
Lanfranco F, Motta G, Baldi M, Gasco V, Grottoli S, Benso A et al. Ghrelin and anterior pituitary function. Front Horm Res 2010; 38: 206-211.
Sakata I, Park WM, Walker AK, Piper PK, Chuang JC, Osborne-Lawrence S, Zigman JM. Glucose-mediated control of ghrelin release from primary cultures of gastric mucosal cells. Am J Physiol Endocrinol Metab 2012; 302: E1300-10. doi: 10.1152/ajpendo.00041.2012
Broglio F, Prodam F, Riganti F, Muccioli G, Ghigo E. Ghrelin: from somatotrope secretion to new perspectives in the regulation of peripheral metabolic functions. Front Horm Res 2006; 35: 102-114.
Gnanapavan S, Kola B, Bustin SA, Morris DM, McGee P, Fairclough P et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab 2002; 87: 2988-2991.
Davenport AP, Bonner TI, Foord SM, Harmar AJ, Neubig RR, Pin JP et al. International union of pharmacology. LVI. Ghrelin receptor nomenclature, distribution, and function. Pharmacol Rev 2005; 57: 541-546.
Camiña JP, Carreira MC, Micic D, Pombo M, Kelestimur F, Dieguez C, Casanueva FF. Regulation of ghrelin secretion and action. Endocrine 2003; 22: 5-12.
Sun Y, Wang P, Zhen H, Smith RG. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci (USA) 2004; 101: 4679-4684.
López M, Lage R, Saha AK, Pérez-Tilve D, Vázquez MJ, Varela L et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metabolism 2008; 7: 389-399.
Andrews ZB, Zhong-Wu L, Walllingford N, Erion DM, Borok E, Friedman JM et al. UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature 2008; 454: 846-851.
Varela L, Vázquez MJ, Cordido F, Nogueiras R, Vidal-Puig A, Diéguez C, López M. Ghrelin and lipid metabolism: key partners in energy balance. J Mol Endocrinol 2011; 46: R43-R63.
Wortley KE, Anderson KD, García K, Murray JD, Malinova L, Liu R et al. Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc Natl Acad Sci (USA) 2004; 101: 8227-8232.
Sun Y, Ahmed S, Smith RG. Deletion of ghrelin impairs neither growth nor appetite. Mol Cell Biol 2003; 23: 7973-7981.
Wortley KE, del Rincón JP, Murray JD, García K, Iida K, Thorner MO, Sleeman MW. Absence of ghrelin protects against early-onset obesity. J Clin Invest 2005; 115: 3573-3578.
Zigman JM, Nakano Y, Coppari R, Balthasar N, Marcus JN, Lee CE et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J Clin Invest 2005; 115: 3564-3572.
Toshinai K, Yamaguchi H, Sun Y, Smith RG, Yamanaka A, Sakurai T et al. Des-acyl ghrelin induces food intake by a mechanism independent of the growth hormone secretagogue receptor. Endocrinology 2006; 147: 2306-2314.
Delhanty PJD, Sun Y, Visser JA, van Kerkwij A, Huisman M, van IJcken WFJ et al. Unacylated ghrelin rapidly modulates lipogenic and insulin signaling pathway gene expression in metabolically active tissues of GHSR deleted mice. PLOS ONE 2010; 5: e11749.
Tolle V, Bassant MH, Zizzari P, Poindessous-Jazat F, Tomasetto C, Epelbaum J, Bluet-Pajot MT. Ultradian rhythmicity of ghrelin secretion in relation with GH, feeding behavior, and sleep-wake patterns in rats. Endocrinology 2002; 143: 1353-1361.
Tannenbaum GS, Epelbaum J, Bowers CY. Interrelationship between the novel peptide ghrelin and somatostatin/growth hormone-releasing hormone in regulation of pulsatile growth hormone secretion. Endocrinology 2003; 144: 967-974.
Avram AM, Jaffe CA, Symons KV, Barkan AL. Endogenous circulating ghrelin does not mediate growth hormone rhythmicity or response to fasting. J Clin Endocrinol Metab 2005; 90: 2982-2987.
Harvey S, Scanes CG, Daughaday WH Ed. Growth hormone. Boca Raton Florida, USA: CRC Press; 1995: 1-24.
Harvey S. Extrapituitary growth hormone. Endocrine 2010; 38: 335-359.
Goldenberg N, Barkan A. Factors regulating growth hormone secretion in humans. Endocrinol Metab Clin N Am 2007; 36: 37-55.
Møller N, Jørgensen JO. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev 2009; 30: 152-177.
Van Cauter E, Kerkhofs M, Caufriez A, Van Onderberger A, Thorner MO, Copinschi G. A quantitative estimation of growth hormone secretion in normal man: reproducibility and relation to sleep and time of day. J Clin Endocrinol Metab 1992; 74: 1441-1450.
Van Cauter E, Plat L, Copinschi G. Interrrelations between sleep and the somatotropic axis. Sleep 1998; 21: 553-566.
Ho KY, Veldhuis JD, Johnson ML, Furlanetto R, Evans WS, Alberti KG, Thorner MO. Fasting enhances growth hormone secretion and amplifies the complex rhythms of growth hormone secretion in man. J Clin Invest 1988; 81: 968-975.
Tannenbaum GS, Martin JB. Evidence for an endogenous ultradian rhythm governing growth hormone secretion in the rat. Endocrinology 1976; 98: 562-570.
Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocrine Reviews 1998; 19: 717-797.
Pilecka I, Whatmore A, van Huijsduijnen RH, Destenaves B, Clayton P. Growth hormone signaling: sprouting links between pathways, human genetics and therapeutic options. Trends Endocrinol Met 2006; 18: 12-18.
Clemmons DR, Underwood LE. Nutritional regulation of IGF-1 and IGF binding proteins. Annu Rev Nutr 1991; 11: 393-412.
Rowland JE, Lichanska AM, Kerr LM, White M, d’Aniello EM, Maher SL et al. In vivo analysis of growth hormone receptor signaling domains and their associated transcripts. Mol Cell Biol 2005; 25: 66-77.
Nørrelund H. The metabolic role of growth hormone in humans with particular reference to fasting. Growth Horm & IGF Res 2005; 15: 95-122.
Clemmons DR. The relative roles of growth hormone and IGF-1 in controlling insulin sensitivity. J Clin Invest 2004; 113: 25-27.
Moller L, Norrelund H, Jessen N, Flyvbjerg A, Pedersen SB, Gaylinn BD et al. Impact of growth hormone receptor blockade on substrate metabolism during fasting in healthy subjects. J Clin Endocrinol Metab 2009; 94: 4524-4532.
Vijayakumar A, Novosyadlyy R, Wu YJ, Yakar S, LeRoith D. Biological effects of growth hormone on carbohydrate and lipid metabolism. Growth Horm IGF Res 2010; 20: 1-7.
Silha JV, Murphy LJ. Minireview: insights from insulin-like growth factor binding protein transgenic mice. Endocrinology 2002; 143: 3711-3714.
Rinderknecht E, Humble RE. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem 1978; 253: 2769-2776.
Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B, Le Roith D. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci (USA) 1999; 96: 7324-7329.
Clemmons DR. Modifying IGF1 activity: an approach to treat endocrine disorders, atherosclerosis and cancer. Nature Rev Drugs Disc 2007; 6: 821-833.
Woelfle J, Chia DJ, Rotwein P. Mechanisms of growth hormone (GH) action. Identification of conserved Stat5 binding sites that mediate GH-induced insulin-like growth factor-I gene activation. J Biol Chem 2003; 278: 51261-51266.
Böni-Schnetzler M, Schmid C, Meier PJ, Froesch R. Insulin regulates insulin-like growth factor I mRNA in rat hepatocytes. Am J Physiol Endocrinol Metab 1991; 260: E846-E851.
Nicolau GY, Haus E, Lakatua D, Plinga L, Sackett-Lundeen L, Berg H et al. Circadian rhythm in plasma immunoreactive somatomedin-C in children. Endocrinologie 1985; 23: 97-103.
Roman O, Seres J, Herichova I, Zeman M, Jurcovicova J. Daily Profiles of plasma prolactin (PRL), growth hormone (GH), insulin-like growth factor-1 (IGF-1), luteinizing hormone (LH), testosterone, and melatonin, and of pituitary PRL mRNA and GH mRNA in male long evans rats in acute phase of adjuvant arthritis. Chronobiol Int 2003; 20: 823-826.
Isley WL, Underwood LE, Clemmons DR. Dietary components that regulate serum somatomedin-C concentrations in humans. J Clin Invest 1983; 71: 175-182.
Yakar S, Pennisi P, Wu Y, Zhao H, LeRoith D. Clinical relevance of systemic and local IGF-I. Endocr Dev 2005; 9:11-16.
Stratikopoulos E, Szabolcs M, Dragatsis I, Klinakisa A, Efstratiadis A. The hormonal action of IGF1 in postnatal mouse growth. Proc Natl Acad Sci (USA) 2008; 105: 19378-19383.
Fontana L, Weiss EP, Villareal DT, Klein S, Holloszy JO. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentrations in humans. Aging Cell 2008; 7: 681-687.
Jiang W, Xiang C, Cazacu S, Brodie C, Mikkelsen T. Insulin-like growth factor binding protein 7 mediates glioma cell growth and migration. Neoplasia 2008; 10: 1335-1342.
Kong SE, Baxter RC, Delhanty PJD. Age-dependent regulation of the acid-labile subunit in response to fasting-refeeding in rats. Endocrinology 2002; 143: 4505-4512.
Kawai M, Rosen CJ. The IGF-1 regulatory system and its impact on skeletal and energy homeostasis. J Cell Biochem 2010; 111: 14-19.
Brodt P, Samania A, Navab R. Inhibition of the type I insulin-like growth factor receptor expression and signaling: Novel strategies for antimetastatic therapy. Biochem Pharmacol 2000; 60: 1101-1107.
Blakesley VA, Scrimgeour A, Esposito D, Le Roith D. Signaling via the insulin-like growth factor-I receptor: does it differ from insulin receptor signaling? Cytokine & Growth Factor Rev 1996; 7: 153-159.
Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nature Rev Mol Cell Biol 2006; 7: 85-96.
Mauras N, Haymond MW. Are the metabolic effects of GH and IGF-I separable? Growth Horm & IGF Res 2005; 15: 19-27.
Torres-Aleman I. Toward a comprehensive neurobiology of IGF-I. Develop Neurobiol 2010; 70: 384-396.
Kaplan SA, Cohen P. The somatomedin hypothesis 2007: 50 years later. J Clin Endocrinol Metab 2007; 92: 4529-4535.
Colao A, Di Somma C, Cascella T, Pivonello R, Vitale G, Grasso LFS, Lombardi G, Savastano S. Relationships between serum IGF1 levels, blood pressure, and glucose tolerance: an observational, exploratory study in 404 subjects. Eur J Endocrinol 2008; 159: 389-397.
Stephan FK. The «other» circadian system: food as a zeitgeber. J Biol Rhythms 2002; 17: 284-292.
Aguilar-Roblero R, Díaz-Muñoz M. Chronostatic adaptations in the liver to restricted feeding: the FEO as an emergent oscillator. Sleep Biol Rhythms 2009; 8: 9-17.
Gooley JJ, Schomer A, Saper CB. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nature Neurosci 2006; 9: 398-407.
Davidson AJ. Lesion studies targeting food-anticipatory activity. Eur J Neurosci 2009; 30: 1658-1664.
Mendoza J, Pévet P, Marie-Paule Felder-Schmittbuhl MP, Bailly Y, Challet E. The cerebellum harbors a circadian oscillator involved in food anticipation. J Neurosci 2010; 30: 1894-1904.
LeSauter J, Hoque N, Weintraub M, Pfaff DW, Silver R. Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proc Natl Acad Sci (USA) 2009; 106: 13582-13587.
Mistlberger RE. Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci Biobehav Rev 1994; 18: 171-195.
Escobar C, Díaz-Muñoz M, Encinas F, Aguilar-Roblero R. Persistence of metabolic rhythmicity during fasting and its entrainment by restricted feeding schedules in rats. Am J Physiol Regulatory Integrative Comp Physiol 1998; 274: R1309-R1316.
Díaz-Muñoz M, Vázquez-Martínez O, Aguilar-Roblero R, Escobar C. Anticipatory changes in liver metabolism and entrainment of insulin, glucagon, and corticosterone in food-restricted rats. Am J Physiol Regulatory Integrative Comp Physiol 2000; 279: R2048-R2056.
Báez-Ruiz A, Escobar C, Aguilar-Roblero R, Vázquez-Martínez O, Díaz-Muñoz M. Metabolic adaptations of liver mitochondria during restricted feeding schedules. Am J Physiol Gastrointest Liver Physiol 2005; 289: G1015-G1023.
Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in the liver by feeding. Science 2001; 291: 490-493.
Luna-Moreno D, Vázquez-Martínez O, Báez-Ruiz A, Ramírez J, Díaz-Muñoz M. Food restricted schedules promote differential lipoperoxidative activity in rat hepatic subcellular fractions. Comp Biochem Physiol A Mol Integr Physiol 2007; 146: 632-643.
Luna-Moreno D, Aguilar-Roblero A, Díaz-Muñoz M. Restricted feeding entrains rhythms of inflammation related factors without promoting an acute-phase response. Chronobiol Int 2009; 26: 1409-1429.
Díaz-Muñoz M, Vázquez-Martínez O, Báez-Ruiz A, Martínez-Cabrera G, Soto-Abraham MV, Avila-Casado MC, Larriva-Sahd J. Daytime food restriction alters liver glycogen, triacylglycerols, and cell size. A histochemical, morphometric, and ultrastructural study. Comp Hepatol 2010; 9: 5-14.
Krieger DT, Hauser H, Krey LW. Suprachiasmatic nuclear lesions do not abolish food-shifted circadian adrenal and temperature rhythmicity. Science 1977; 197: 398-399.
Martínez-Merlos MT, Ángeles-Castellanos M, Díaz-Muñoz M, Aguilar-Roblero R, Mendoza J, Escobar C. Dissociation between adipose tissue signals, behavior and the food-entrained oscillator. J Endocrinol 2004; 181: 53-63.
Mistlberger RE, Skene DJ. Nonphotic entrainment in humans? J Biol Rhythms 2005; 20: 339-352.
Caldelas I, Montúfar-Chaveznava R, Martínez-Gómez M, Hudson R. Non-photic entrainment of the circadian system in mammals: A developmental approach. In: Fanjul-Moles ML, Aguilar-Roblero R, eds. Comparative Aspects of Circadian Rhythms. India: Transworld Research Network; 2008: 143-158.
Blum ID, Waddington Lamont E, Abizaid A. Competing clocks: Metabolic status moderates signals from the master circadian pacemaker. Neurosci Biobehav Rev 2011; 36: 254-270.
Silver R, Balsam P. Oscillators entrained by food and the emergence of anticipatory timing behaviors. Sleep Biol Rhythms 2010; 8: 120-136.
Blum ID, Patterson Z, Khazall R, Lamont EW, Sleeman MW, Horvath LT, Abizaid A. Reduced anticipatory locomotor responses to scheduled meals in ghrelin receptor deficient mice. Neurosci 2009; 164: 351-259.
Davidson AJ, Stephan FK. Feeding-entrained circadian rhythms in hypophysectomized rats with suprachiasmatic nucleus lesions. Am J Physiol Regulatory Integrative Comp Physiol 1999; 277: R1376-R1384.
Kalsbeek A, Scheer FA, Perreau-Lenz S, La Fleur SE, Yi CX, Fliers E, Buijs RM. Circadian disruption and SCN control of energy metabolism. FEBS Letters 2011; 585: 1412-1426.
Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci (USA) 2009; 106: 4453-4458.
Salgado-Delgado R, Nadia S, Angeles-Castellanos M, Buijs RM, Escobar C. In a rat model of night work, activity during the normal resting phase produces desynchrony in the hypothalamus. J Biol Rhythms 2010; 25: 421-431.
Wyse CA, Selman C, Page MM, Coogan AN, Hazlerigg DG. Circadian desynchrony and metabolic dysfunction; did light pollution make us fat? Medical Hypotheses 2011; 77: 1139-1144.
Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E et al. Obesity and metabolic syndrome in circadian clock mutant mice. Science 2005; 308: 1043-1045.
Sookoian S, Gemma C, Gianotti TF, Burgueño A, Castaño G, Pirola CJ. Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity. Am J Clin Nutr 2008; 87: 1606-1615.
Rojas-Martínez R, Aguilar-Salinas CA, Jiménez-Corona A, Gómez-Pérez FJ, Barquera S, Lazcano-Ponce E. Prevalence of obesity and metabolic syndrome components in Mexican adults without type 2 diabetes or hypertension. Salud Publica Mex 2012; 54: 7-12.
Lemmer B. Discoveries of rhythms in human biological functions: a historical review. Chronobiol Int 2009; 26: 1019-1068.
Lévi F, Okyar A, Dulong S, Innominato PF, Clairambault J. Circadian timing in cancer treatments. Annu Rev Pharmacol Toxicol 2010; 50: 377-421.