2013, Número 1
<< Anterior Siguiente >>
Investigación en Discapacidad 2013; 2 (1)
Las neurociencias en el diagnóstico y en la evaluación de la rehabilitación integral de secuelas de lesiones cerebrales en el INR
Brust-Carmona H, Galicia M, Flores ÁB, Borunda F, Yáñez O
Idioma: Español
Referencias bibliográficas: 59
Paginas: 28-37
Archivo PDF: 93.81 Kb.
RESUMEN
Las enfermedades del sistema nervioso representan un problema importante por su alta incidencia en etapas productivas de la vida de los individuos. El electroencefalograma es una de las técnicas neurofisiológicas ampliamente utilizadas en la práctica clínica cotidiana. Sin embargo, el análisis analógico tradicional sólo aporta indicadores diagnósticos, preferentemente para procesos epileptogénicos. Actualmente, el análisis cuantitativo de parámetros electroencefalográficos, como la densidad de la potencia espectral y de la potencia absoluta de diferentes bandas de frecuencia con su distribución topográfica, son una herramienta eficiente para estudiar el desarrollo de la organización cerebral, así como su relación con el desempeño cognoscitivo de los individuos en diferentes etapas de su vida. El objetivo del presente trabajo es presentar las bases teóricas e hipótesis anatomofuncionales que subyacen en el análisis de las medidas espectrales del electroencefalograma cuantitativo. Asimismo, se sugiere la utilidad potencial de dicho análisis cuantitativo del electroencefalograma para el diagnóstico, tratamiento y rehabilitación de pacientes con lesiones neurológicas, producto de traumatismos craneoencefálicos, enfermedades cerebrovasculares o de alteraciones en el neurodesarrollo. Por último, se describe un paradigma de registro idóneo, así como las características de los indicadores cuantitativos empleados en las líneas de investigación en desarrollo en el Laboratorio de Electroencefalografía de la Dirección de Investigación del Instituto Nacional de Rehabilitación, deseando motivar al personal de las áreas clínicas, psicológicas y sociales a integrarse para la elaboración y ejecución de protocolos de investigación que repercutan en la mejoría de la atención a los pacientes del instituto y de otras instituciones de salud y de docencia.
REFERENCIAS (EN ESTE ARTÍCULO)
Ibarra LG, Segura García VH, Chávez Arias DD, Borunda Falcon O, Chávez Heres T, Ridaura Valencia C et al. Análisis epidemiológico de las enfermedades y traumatismos atendidos en el Instituto Nacional de Rehabilitación, durante el año 2011. Informe Centro Colaborador de la OPS/OMS para la investigación y rehabilitación médica, 2012.
Pérez Tamayo R. De la magia primitiva a la medicina moderna. La ciencia para todos. México: Fondo de Cultura Económica; 1997. Disponible en: bibliotecadigital. ilce.edu.mx/sites/ciencia/volumen3/ciencia3/154/html/sec_9.html
Niedermeyer E. Abnormal EEG patterns epileptic and paroxysmal. En: Ernst Niedermeyer y Fernado Lopes Da Silva. Electroencephalography. Basic principles, clinical applications, and related fields. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 1998: pp 235-260.
Popper KR. Knowledge and the body-mind problem: in defence of interaction. Routledge, London. Chapman & Hall, Incorporated; 1994.
De la Fuente R, Álvarez Leefman J. Biología de la mente.México: El Colegio Nacional-FCE; 1998.
INEGI. Censo de Población y Vivienda 2010, cuestionario ampliado. México: 2010. [Septiembre de 2012]. Disponible en: http://www.cuentame.inegi.org.mx/ poblacion/discapacidad.aspx?tema=P%20mort
INEGI. Causas de defunción. Defunciones generales totales por principales causas de mortalidad. México: 2011. [Septiembre de 2012]. Disponible en: http://www.inegi.org.mx/sistemas/sisept/Default. aspx?t=mdemo107&s=est&c=23587
CENAPRA. Perfil accidentes de tráfico. República Mexicana. México: Observatorio Nacional de Lesiones, CENAPRA; 2010. [Septiembre de 2012]. Disponible en: http://www.cenapra.salud.gob.mx/CENAPRA_2010/ estadisticas/Perfil_Nacional_2008-2.pdf
Odriozola FA, Irriarte Ibarrarán M, Mendía Gorostidi A, Murgialai A, Garde PM. Pronóstico de las secuelas tras la lesión cerebral. Med Intensiva 2009; 33: 171-181.
Damasio A. Y el cerebro creó al hombre: ¿cómo pudo el cerebro generar emociones, sentimientos, ideas y el yo? España: Ediciones Destino; 2010.
Squire LR, Kandel ER. Memory from mind to molecules. Second Edition. New York: Roberts and Company; 2009.
Schierhout G, Roberts I. Fármacos antiepilépticos para la prevención de convulsiones después de una lesión cerebral traumática aguda [internet]. Oxford: Cochrane Database of Systematic Reviews; 2012. Disponible en: http://www. update-software.com
Roy JE, Prichep L, Easton P. Normative data banks and neurometrics: basic concepts, methods and results of norms constructions. En: Remond A. Handbook of electroencephalography and clinical neurophysiology, Vol. III. Computer analysis of the EEG and other neurophysiological signals. California: Elsevier Amsterdam; 1987: 449-495.
Leon-Carrion J, Martin-Rodríguez JF, Damas-López J, Barroso y Martin JM, Domínguez-Morales MR. Delta- alpha ratio correlates with level of recovery after neurorehabilitation in patients with acquired brain injury. Clin Neurophysiol 2009; 120: 1039-1045.
Buzsáki G, Draguhn A. Neuronal oscillations in cortical networks. Science 2004; 30: 1926-1929.
Mansilla Olivares A. Teoría neurocientífica: del átomo a la molécula y de la molécula a la función. México: Elsevier, Masson Doyma S.A; 2010.
Amara G. An introduction to wavelets. IEEE Computational Science and Engineering, 1995; 2: 18-21.
Chorlian DB, Rangaswamy M, Porjesz B. EEG coherences: topography and frequency structure. Exp Brain Res 2009; 198: 59-83. Doi 10.1007/s 00221/009/1936/9.
Pfurstscheller G. The cortical activation model (CAM). Prog Brain Res 2006; 159: 19-27.
Smith K. Settling the great glia debate: do the billions of non-neuronal cells in the brain send messages of their own? Nature 2010; 468: 160-162.
Purves D, Augustine GJ, Fitzpatrick D et al. Neuroscience. 2nd ed. Sunderland, MA: Sinauer Associates; 2001.
Principles of signaling and organization. En: Nicholls JG, Martin RA, Wallace BG, Fuchs PA. From neuron to brain. 4th ed. Sunderland: Sinauer Associates; 2001: 15-22.
Kandel ER, Schwartz JH. Principles of neural science. 5th ed. New York: McGraw Hill Medical; 2013.
Buzsáki G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 2010; 68: 362-85.
Lopes da Silva F. Neural mechanisms underlying brain waves: from neural membranes to networks. Electroenceph clin Neurophysiol 1991; 79: 81-93.
Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M. Natural frequencies of human corticothalamic circuits. J Neurosci 2009; 29: 7679-7685. doi: 10.1523/JNEUROSCI.0445-09.2009.
Aloe L. Rita Levi-Montalcini and the discovery of NGF. The first nerve cell growth factor. Arch Ital Biol 2011; 149: 175-81. doi: 10.4449/aib.v149i2.1377.
Sakurai Y. The search for cell assemblies in the working brain. Behav Brain Res 1998; 91:1-13.
Nuñez PL, Wingeier BM, Silberstein RB. Spatial- temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurement and global binding of local networks. Hum Brain Mapp 2001; 13: 125-64.
Llinás RR, Steriade M. Bursting of thalamic neurons and states of vigilance. J Neurophysiol 2006; 95 (6): 3297-308.
Pfurtscheller G, Lopes da Silva FH. Event-related EEG/ MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 1999; 110: 1842-1857.
Suffczynski P, Kalitzin S, Pfurtscheller G, Lopes da Silva FH. Computational model of thalamo-cortical networks: dynamical control of alpha rhythms in relation to focal attention. Int J Psychophysiol 2001; 43: 25-40.
Singer W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 1999; 24: 49-65.
Tononi G. An information integration theory of consciousness. BMC Neurosci 2004; 5:42. doi:10.1186/1471-2202-5-42.
Kopell N, Kramer MA, Malerba P, Whittington MA. Are different rhythms good for different functions? Front Hum Neurosci 2010; 4: 187. doi 10.3389/fnhum.2010.00187.
Ergenoglu T, Demilrap T, Bayraktaroglub Z, Ergen M, Beydagi H, Uresin Y. Alpha rhythm of the EEG modulates visual detection performance in humans. Brain Res Cogn Brain Res 2004; 20: 376-383.
Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 1999; 29: 169-95.
Harmony T, Fernández T, Silva J, Bernal J, Díaz-Comas L, Reyes A. EEG delta activity: an indicator of attention to internal processing during performance of mental tasks. Int J Psychophysiol 1996; 24: 161-171.
Bruns A, Eckhorn R. Task-related coupling from high-to low-frequency signals among visual cortical areas in human subdural recordings. Int J Psychophysiol 2004; 51: 97-116.
Başar E, Schurmanm M, Sakowitz O. The selectively distributed theta system: functions. Int J Psychophysiol 2001; 39: 197-212.
Sauseng P, Hoppe J, Klimesch W, Gerloff C, Hummel FC. Dissociation of sustained attention from central executive functions: local activity and interregional connectivity in the theta range. Eur J Neurosci 2007; 25: 578-593.
Brust-Carmona H, Ramírez-Aboytes F, Sánchez A, Martínez J, Rodríguez MA, Flores Avalos B et al. Cambios del EEG por habituación y condicionamiento en niños de tres a 15 años que acuden al Instituto Nacional de Rehabilitación (INR). Salud Mental 2009; 32: 459-467.
Mölle M, Marshall L, Fehm HL, Born J. EEG theta synchronization conjoined with alpha desynchronization indicate intentional encoding. Eur J Neurosci 2002; 15: 923-928.
Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc Natl Acad Sci 2004; 101: 9849-9854.
Raichle ME. Two views of brain function. Trends Cogn Scie 2010; 14: 180-190. doi:10.1016/j.tics.2010.01.008.
Ostrosky-Solís, F. NEUROPSI Atención y Memoria 2003.
Wechsler, D. WAIS-III: Escala Wechsler de inteligencia para adultos-III. 2a. ed. Manual Moderno; 2003.
Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencelphalogr Clin Neurol 1949; 1: 455-473.
Grossberg S. How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. Spatial Vision 1999; 12: 163-185.
Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top–down processing. Nat Rev Neurosci 2001; 2: 704-716. doi:10.1038/35094565.
Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ. Perception’s shadow: long-distance synchronization of human brain activity. Nature 1999; 397: 430-433.
Ward LM. Synchronous neural oscillations and cognitive processes. Trends Cogn Sci 2003; 17: 553-559.
Machado MS, Cunha CE, Portella G, Silva B, Velasques VH, Bastos L et al. Participación de la corteza parietooccipital en el proceso de integración sensoriomotora: estudio electroencefalográfico. Rev Neurol 2008; 47: 146-149.
Engel AK, Singer W. Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci 2001; 5: 16-25.
Varela F, Lachaux J-P, Rodriguez E, Martinerie J. The brain web: phase synchronization and large-scale integration. Nat Rev Neurosci 2001; 2: 229–239.
Grossberg S. The link between brain learning, attention, and consciousness. Conscious Cogn 1999; 8: 1–44.
Steriade M, Llinas R. The functional states of the thalamus and the associated neuronal interplay. Physiol Reviews 1988; 68: 649-742.
Taylor AG, Goehler LE, Galper DI, Innes KE, Bourguignon C. Top-down and bottom-up mechanisms in mind-body medicine: development of an integrative framework for psychophysiological research. Explore 2010; 6: 29-41. doi: 10.1016/j.explore.2009.10.004PMCID: PMC2818254.
Brust-Carmona H, Brust-Mascher E, Mascher I. Circuitos neuronales en aprendizajes complejos. En: Aprendamos a aprender. España; Editorial Trillas; 2012: 268-282.