2013, Número 02
<< Anterior Siguiente >>
MediSan 2013; 17 (02)
Láser eximer y microscopia confocal: plataformas tecnológicas de la visión del futuro
Rojas AE, González SJ
Idioma: Español
Referencias bibliográficas: 50
Paginas: 344-356
Archivo PDF: 549.37 Kb.
RESUMEN
Introducción: la Cirugía Refractiva es una subespecialidad de la Oftalmología, encargada de los procedimientos quirúrgicos dirigidos al tratamiento de los defectos refractivos.
Objetivos: explicar los principios generales de funcionamiento de la microscopia confocal de la córnea, describir las características microscópicas de la córnea normal por microscopia confocal y enunciar los aspectos teóricos generales relacionados con la tecnología láser excimer.
Desarrollo: la microscopia confocal es un método no invasivo para el estudio de imágenes microscópicas en tejidos vivos, donde la iluminación y la detección se encuentran en el mismo plano focal; además, la luz se refleja y pasa a través de un segundo lente objetivo. El láser excimer utiliza pulsos controlados de energía de luz ultravioleta de 193 nm de longitud de onda para aplicar ablación sobre el tejido estromal, lo cual produce un patrón de excisión refractivo y genera nuevos radios de curvatura. Asimismo, el término excimer es una forma química diatómica singular que solo existe en estado excitado y durante un tiempo minúsculo.
Conclusiones: el estudio de la córnea por microscopia confocal permite la diferenciación de las subcapas del epitelio, el plexo nervioso subbasal, los queratocitos y nervios del estroma, así como las células del endotelio corneal. El láser excimer, posibilita el moldeamiento de la curvatura corneal, con vistas a lograr un resultado refractivo con mínimas alteraciones al tejido circundante; por tanto, a escala internacional, se ha convertido en la técnica quirúrgica prevaleciente para el tratamiento de las ametropías.
REFERENCIAS (EN ESTE ARTÍCULO)
Palanker DV, Blumenkranz MS, Marmor MF. Fifty years of ophthalmic laser therapy. Arch Ophthalmol. 2011;129(12):1613-9.
Kato N, Toda I, Hori Komai Y, Sakai C, Tsubota K. Five year outcome of LASIK for myopia. Ophthalmology. 2008;115(5):839-44.
Vanathi M, Tandon R, Sharma N, Titiyal JS, Pandey RM, Vajpayee RB. In-vivo slit scanning confocal microscopy of normal corneas in indian eyes. Indian J Ophthalmol. 2003;51(3):225-30.
Zhang H, Xu L, Chen C, Jonas JB. Central corneal thickness in adult Chinese. Association with ocular and general parameters. The Beijing Eye Study. Arch Clin Exp Ophthalmol. 2008;246:587-92.
Ku JY, Niederer RL, Patel DV, Sherwin T, McGhee CN. Laser scanning in vivo confocal analysis of keratocyte density in keratoconus. Ophthalmology. 2008;115(5):845-50.
Alió JL, Ortiz D, Muftuoglu O, García MJ. Ten years after photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK) for moderate to high myopia (control-matched study). Br J Ophthalmol. 2009;93(10):1313-8.
Moilanen JA, Holopainen JM, Vesaluoma MH, Tervo TM. Corneal recovery after lasik for high myopia: a 2-year prospective confocal microscopic study. Br J Ophthalmol. 2008;92(10):1397-1402.
Torres RJ, Jones E, Edmunds B, Becker T, Cioffi GA, Mansberger SL. Central corneal thickness in Northwestern American Indians/Alaskan Natives and comparison with white and African-American persons. Am J Ophthalmol. 2008;146(5):747-51.
Lantigua Maldonado IC, García Martín M, González Duque Y, Machado Fernández EJ, Torrico Delgadillo M, Padilla González CM. Resultados del LASIK miópico en el Instituto Cubano de Oftalmología "Ramón Pando Ferrer". Rev Cubana Oftalmol. 2012 [citado 8 Jul 2012];25(1). Disponible en:http://scielo.sld.cu/scielo.php?pid=S0864 -21762012000100003&script=sci_arttext
Martínez Rodríguez R, Iviricu Tielves RJ, Correa Rojas O, Blanco Baños A, Acosta González LR. Frecuencia de ametropías diagnosticadas en consulta de cirugía refractiva. Pinar del Río 2007. CIGET Pinar del Río. 2008[citado 8 Jul 2012];10(3). Disponible en:http://www.ciget.pinar.cu/Revista/No.2008-3/art%EDculos /Dr.%20Rodolfo%20%28Cirug%EDa%20Refractiva%29.pdf
Tomita M, Kanamori T, Waring GO, Yukawa S, Yamamoto T, Sekiya K, et al. Simultaneous corneal inlay implantation and laser in situ keratomileusis for presbyopia in patients with hyperopia, myopia, or emmetropia: Six-month results. Journal of Cataract & Refractive Surgery. 2012;38(3):495-506.
Christopoulos V, Kagemann L, Wollstein G, Ishikawa H, Gabriele ML, Wojtkowski M, et al. In vivo corneal high-speed, ultra-high-resolution optical coherence tomography. Arch Ophthalmol. 2007;125(8):1027-35.
Poole CA, Brookes NH, Clover GM. Keratocyte networks visualized in the living cornea using vital dyes. J Cell Sci. 1993;106(Pt2):685-91.
Tomii S, Kinoshita S. Observations of human corneal epithelium by tandem scanning confocal microscope. Scanning. 1994;16(5):305-6.
Müller LJ, Pels L, Vrensen GF. Novel aspects of the ultrastructural organization of human corneal keratocytes. Invest Ophthalmol Vis Sci. 1995;36(13):2557-67.
Zhivov A, Guthoff RF, Stachs O. In vivo confocal microscopy of the ocular surface: from bench to bedside and back again. Br J Ophthalmol. 2010;94:1557-8.
Erie JC, MacLaren JW, Patel SV. Confocal microscopy in ophthalmology. Am J Ophthalmol. 2009;148(5):639-46.
Frueh BE, Cadez R, Böhnke M. In vivo confocal microscopy after photorefractive keratectomy in humans. A prospective, long-term study. Arch Ophthalmol 1998;116(11):1425-31.
Tavakoli M, Hossain P, Malik RA. Clinical applications of corneal confocal microscopy. Clinical Ophthalmology. 2008;2(2):435-45.
Zhivov A, Stachs O, Stave J, Guthoff RF. In vivo three-dimensional confocal laser scanning microscopy of corneal surface and epithelium. Br J Ophthalmol. 2009;93(5):667-72.
Villani E, Galimberti D, Viola F, Ratiglia R. In vivo confocal microscopy of the ocular surface. Am J Ophthalmol. 2010;149(4):689-90.
Kobayashi A, Mawatari Y, Yokogawa H, Sugiyama K. In vivo laser confocal microscopy after descemet stripping with automated endothelial keratoplasty. Am J Ophthalmol. 2008;145(6):977-85.
Guthoff RF, Zhivov A, Stachs O. In vivo confocal microscopy, an inner vision of the cornea-a major review. Clin Experiment Ophthalmol. 2009;37(1):100-17.
Petroll WM, Cavanagh HD. Remote-controlled scanning and automated confocal microscopy through focusing using a modified HRT rostock corneal module. Eye Contact Lens. 2009;35(6):302-8.
Javaloy J, Vidal MT, Ruiz Moreno JM, Alió JL. Microscopía confocal de la córnea en la cirugía fotorrefractiva. Arch Soc Esp Oftalmol. 2005;80(9):497-510.
Ramírez Fernández M, Martínez Menchaca Y, Naranjo Tackman R. Hallazgos mediante microscopía confocal en pacientes postoperados de LASIK tratados con antiinflamatorios no esteroideos (AINES). Rev Mex Oftalmol. 2008;82(6):349-51.
Nubile M, Mastropasqua L. In vivo confocal microscopy of the ocular surface: where are we now?. Br J Ophthalmol. 2009;93(7):850-2.
Reynolds A, Moore JE, Naroo SA, Moore T, Shah S. Excimer laser surface ablation-a review. Clinical & Experimental Ophthalmology. 2010;38(2):168-82.
Reinstein DZ, Srivannaboon S, Gobbe M, Archer TJ, Silverman RH, Sutton H, et al. Epithelial thickness profile changes induced by myopic LASIK as measured by Artemis very high-frequency digital ultrasound. J Refract Surg. 2009;25(5):444-50.
Mastropasqua L, Nubile M, Lanzini M, Carpineto P, Ciancaglini M, Pannellini T, et al. Epithelial dendritic cell distribution in normal and inflamed human cornea: in vivo confocal microscopy study. Am J Ophthalmol. 2006;142(5):736-44.
Nishida T. The cornea: stasis and dynamics. Nihon Ganka Gakkai Zasshi. 2008;112(3):179-212.
Sherwin T, McGhee CN. Corneal epithelial homeostasis. Ophthalmology. 2010;117(1):190-1.
Reichard M, Hovakimyan M, Wree A, Meyer Lindenberg A, Nolte I, Junghans C, et al. Comparative in vivo confocal microscopical study of the cornea anatomy of different laboratory animals. Curr Eye Res. 2010;35(12):1072-80.
DelMonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg. 2011;37(3):588-98.
Mootha VV, Dawson D, Kumar A, Gleiser J, Qualls C, Albert DM. Slitlamp, specular, and light microscopic findings of human donor corneas after laser-assisted in situ keratomileusis. Arch Ophthalmol. 2004;122(5):686-92.
Ivarsen A, Fledelius W, Hjortdal JØ. Three-year changes in epithelial and stromal thickness after PRK or LASIK for high myopia. Cornea. 2008;27:70-6.
Dvorscak L, Marfurt CF. Age-related changes in rat corneal epithelial nerve density. Invest Ophthalmol Vis Sci. 2008;49(3):910-6.
Pérez Gómez I, Efron N. Change to corneal morphology after refractive surgery (myopic laser in situ keratomileusis) as viewed with a confocal microscope. Optom Vis Sci. 2003;80(10):690-7.
Esquenazi S, He J, Li N, Bazan NG, Esquenazi I, Bazan HE. Comparative in vivohigh-resolution confocal microscopy of corneal epithelium, sub-basalnerves and stromal cells in mice with and without dry eye after photorefractive keratectomy. Clin Experiment Ophthalmol. 2007;35(6):545-9.
40.Deng SX, Sejpal KD, Tang Q, Aldave AJ, Lee OL, Yu F. Characterization of limbal stem cell deficiency by in vivo laser scanning confocal microscopy: a microstructural approach. Arch Ophthalmol. 2012;130(4):440-5.
Masters BR, Bohnke M. Three-dimensional confocal microscopy of the living human eye. Annu Rev Biomed Eng. 2002;4:69-91.
Patel DV, Sherwin T, McGhee CN. Laser scanning in vivo confocal microscopy of the normal human corneoscleral limbus. Invest Ophthalmol Vis Sci. 2006;47(7):2823-7.
Azar DT, Pluznik D, Jain S, Khoury JM. Gelatinase B and A expression after laser in situ keratomileusis and photorefractive keratectomy. Arch Ophthalmol. 1998;116(9):1206-8.
Ehlers N, Heegaard S, Hjortdal J, Ivarsen A, Nielsen K, Prause JU. Morphological evaluation of normal human corneal epithelium. Acta Ophthalmol. 2010;88(8):858-61.
Ivarsen A, Laurberg T, Møller Pedersen T. Characterisation of corneal fibrotic wound repair at the LASIK flap margin. Br J Ophthalmol. 2003;87(10):1272-8.
Kobayashi A. In vivo laser confocal microscopic analysis of the interface between Bowman's layer and the stroma of the cornea. Nihon Ganka Gakkai Zasshi. 2008;112(11):947-52.
Scarpa F, Zheng X, Ohashi Y, Ruggeri A. Automatic evaluation of corneal nerve tortuosity in images from in vivo confocal microscopy. Invest Ophthalmol Vis Sci. 2011;52:6404-08.
Zhivov A, Blum M, Guthoff R, Stachs O. Real-time mapping of the subepithelial nerve plexus by in vivo confocal laser scanning microscopy. Br J Ophthalmol. 2010;94(9):1133-5.
Allgeier S, Zhivov A, Eberle F, Koehler B, Maier S, Bretthauer G, et al. Image reconstruction of the subbasal nerve plexus with in vivo confocal microscopy. Invest Ophthalmol Vis Sci. 2011;52(9):5022-8.
Patel SV, Patel SV, McLaren JW, Kittleson KM, Bourne WM. Subbasal nerve density and corneal sensitivity after laser in situ keratomileusis: femtosecond laser vs mechanical microkeratome. Arch Ophthalmol. 2010;128(11):1413-9.