2001, Número 4
<< Anterior Siguiente >>
Rev Med Hosp Gen Mex 2001; 64 (4)
Xenón: Un avance en la anestesiología en el tercer milenio
López-Herranz GP
Idioma: Español
Referencias bibliográficas: 63
Paginas: 225-233
Archivo PDF: 101.52 Kb.
RESUMEN
El xenón (Xe) es un gas inerte descubierto en 1898 por Ramsay y Travers como residuo de la evaporación de los componentes del aire líquido. Se encuentra en muy baja concentración en la atmósfera, por lo que su obtención es muy costosa. En 1951, se utilizó por primera vez como anestésico. El Xe tiene mínimos efectos hemodinámicos, y el coeficiente de partición sangre/gas más bajo de todos los agentes anestésicos inhalados que se conocen, con inducción y recuperación muy rápida de la anestesia. La concentración alveolar mínima es de 71% y es más potente que el óxido nitroso. El Xe es un agente inhalatorio con efecto analgésico y anestésico. No se metaboliza en el organismo y su eliminación es por vía pulmonar. Se recomienda su administración en sistemas de inhalación de flujos bajos o cerrados, o bien, con una tecnología más avanzada, el reciclaje de este gas. Todas las ventajas que presenta el Xe, hacen de este gas, un agente anestésico inhalado muy prometedor en procedimientos anestésicos en el futuro.
REFERENCIAS (EN ESTE ARTÍCULO)
Andrews FC. Xenon. En: The World Book Multimedia Encyclopedia 1998. Chicago, Il: World Book, W Monroe, 1998; 525.
The Columbia Encyclopedia. 6th ed. USA: 2001.
Xenón. Enciclopedia Microsoft Encarta 97. USA: Microsoft Corporation, 1993-1996.
Gorrett ME. The production and availability of xenon. Presented at the Annual Meeting of the Association for Low Flow Anesthesia Gent. Belgium. September 1998: 18-19.
Albert MS, Cates GD, Driehuys B, Happer W, Saam B et al. Biological magnetic resonance imaging using laser polarized 129Xe. Nature 1994; 370: 199-201.
Cullen SC, Gross EG. The anesthetic properties of xenon in animals and human beings, with additional observations on krypton. Science 1951; 113: 580-582.
Kennedy RR, Stokes JW, Downing P. Anesthesia and the “inert” gases with special reference to xenon. Anesth Intensive Care 1992; 20: 66-70.
Trudell JR, Koblin DD, Eger EI. A molecular description of how noble gases and nitrogen bind to a model site of anesthetic action. Anesth Analg 1998; 87: 411-418.
Xu Y, Tang P. Amphiphilic sites for general anesthetic action? Evidence from 129Xe-[IH] intermolecular nuclear Overhauser effects. Biochim Biophys Acta 1997; 1323: 154-162.
Goto T, Suwa K, Uezono S, Ichinose F, Uchiyama M, Morita S. The blood-gas partition coefficient of xenon may be lower than generally accepted. Br J Anaesth 1998; 80: 255-256.
Steward A, Allott PR, Cowles AL, Mapleson WW. Solubility coefficients for inhaled anaesthetics for water, oil and biological media. Brit J Anaesth 1973; 45: 282-293.
Koblin DD, Fang Z, Eger EI, Laster MJ, Gong D, Ionesco P et al. Minimum alveolar concentrations of noble gases, nitrogen, and sulfur hexafluoride in rats: Helium and neon gas nonimmobilizers (nonanesthetics). Anesth Analg 1998; 87: 419-424.
Franks JJ, Horn JL, Janicki PK, Singh G. Halothane, isoflurane, xenon and nitrous oxide inhibit calcium ATPase pump activity in rat brain synaptic plasma membranes. Anesthesiology 1995; 82: 108-117.
Singh G, Janicki PK, Horn JL, Janson VE, Franks JJ. Inhibition of plasma membrane Ca(2+)-ATPase pump activity in cultured C6 glioma cells by halothane and xenon. Life Sci 1995; 56: 219-224.
Horn JL, Janicki PK, Franks JJ. Nitrous oxide and xenon enhance phospholipid-N-methylation in rat brain synaptic plasma membranes. Life Sci 1995; 56: 455-460.
Utsumi J, Adachi T, Miyazaki Y, Kurata J, Shibata M et al. The effect of xenon on spinal dorsal horn neurons: a comparison with nitrous oxide. Anesth Analg 1997; 84: 1372-1376.
Miyazaki Y, Adachi T, Utsumi J, Shichino T, Segawa H. Xenon has greater inhibitory effects on spinal dorsal horn neurons than nitrous oxide in spinal cord transected cats. Anesth Analg 1999; 88: 893-897.
Franks NP, Dickinson R, de Sousa SLM, Hall AC, Lieb WR. How does xenon produce anesthesia? Nature 1998; 396: 324.
de Sousa SLM, Dickinson R, Lieb WR, Franks NP. Contrasting synaptic actions of the inhalational general anesthetics isoflurane and xenon. Anesthesiology 2000; 92: 1055-1066.
Tanner JW, Johansson JS, Liebman PA, Eckenhoff RG. Xenon does not fit a model target for potent inhalational agents. 2000 ASA Meeting Abstracts. 2000.
Yamakura T, Harris RA. Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated ion channels. Comparison with isoflurane and ethanol. Anesthesiology 2000; 93: 1095-1101.
Nakata Y, Goto T, Ishiguro Y, Terui K, Kawakami H et al. Minimum alveolar concentration (MAC) of xenon with sevoflurane in humans. Anesthesiology 2001; 94: 611-614.
Nakata Y, Goto T, Ishiguro Y, Terui K, Niimi Y, Morita S. Anesthetic doses of sevoflurane to block cardiovascular responses to incision when administered with xenon or nitrous oxide. Anesthesiology 1999; 91: 369-373.
Nakata Y, Goto T, Saito H, Ishiguro Y, Terui K et al. Plasma concentration of fentanyl with xenon to block somatic and hemodynamic responses to surgical incision. Anesthesiology 2000; 92: 1043-1048.
Max T, Froeba G, Wagner D, Baeder S, Goertz A, Georgieff M. Effects on haemodynamics and catecholamine release of xenon anaesthesia compared with total I.V. anaesthesia in pig. Br J Anaesth 1997; 78: 326-327.
Boomsma F, Rupreht J, Man in’t Veld AJ, de Jong FH, Dzoljic M, Lachmann B. Haemodynamic and neurohumoral effects of xenon anesthesia. A comparison with nitrous oxide. Anaesthesia 1990; 45: 273-278.
Luttropp HH, Romner B, Perhag L, Eskilsson J, Fredriksen S, Werner O. Left ventricular performance and cerebral haemodynamics during xenon anaesthesia. A transesophageal echocardiography and transcranial Doppler sonography study. Anaesthesia 1993; 48: 1045-1049.
Burov NE, Ivanov GG, Ostapchenko DA, Kornienko LJ, Shulunov MV. Hemodynamics and function of the myocardium during xenon anesthesia. Anesteziol Reanimatol 1993; 5: 57-59.
Hettrick DA, Pagel PS, Kersten JR, Tessmer JP, Bosnjak ZJ, Georgieff M et al. Cardiovascular effects of xenon in isoflurane anesthetized dogs with dilated cardiomyopathy. Anesthesiology 1998; 89: 1166-1173.
Stowe DF, Rehmert GC, Kwork W-M, Weigt HU, Georgieff M, Bosnjak ZJ. Xenon does not alter cardiac function or major caution currents in isolated guinea pig hearts or myocytes. Anesthesiology 2000; 92: 516-522.
Zhang P, Ohara A, Mashimo T, Imanaka H, Uchiyami A, Yoshiya I. Pulmonary resistance in dogs: A comparison of xenon with nitrous oxide. Can J Anaesth 1995; 42: 547-553.
Calzia E, Stahl W, Handschuh T, Marx T, Froba G, Bader S. Respiratory mechanics during xenon anesthesia in pigs. Anesthesiology 1999; 91: 1378-1386.
Lachmann B, Armbruster S, Shairer W, Landstra M, Trouwborst A, VanDaal GJ et al. Safety and efficacy of xenon in routine use as an inhalational anaesthetic. Lancet 1990; 335: 1413-1415.
Calzia E, Stahl W, Handschuh T, Marx T, Froba G, Georgieff M et al. Continuous arterial PO2 and PCO2 measurements in swine during nitrous oxide and xenon elimination. Anesthesiology 1999; 90: 829-834.
Junk L, Dhawan V, Thaler HT, Rottenberg DA. Effects of xenon and krypton on regional cerebral blood flow in the rat. J Cereb Blood Flow Metab 1985; 5: 126-132.
Gur D, Yonas H, Jackson DL, Wolfson SK, Rockette H, Good WF et al. Measurements of cerebral blood flow during xenon inhalation as measuremed by the microspheres method. Stroke 1985; 16: 871-874.
Hartmann A, Wassman H, Czernicki Z, Dettmers C, Schumacher HW, Tsuda Y. Effects of stable xenon in room air on regional cerebral blood flow and electroencephalogram in normal baboons. Stroke 1987; 18: 643-648.
Fink H, Blobner M, Bogdanski R, Hanel F, Werner C, Kochs E. Effects of xenon on cerebral blood flow and autoregulation: An experimental study in pigs. Br J Anaesth 2000; 84: 221-225.
Frietsch T, Bogdanski R, Blobner M, Werner C, Kuschinsky W, Waschke KF. Effects of xenon on cerebral blood flow and cerebral glucose utilization in rats. Anesthesiology 2001; 94: 290-297.
Reinet H, Schirmer U, Marx T, Topalidis P, Schmidt M. Diffusion of xenon and nitrous oxide into the bowel. Anesthesiology 2001; 94: 475-477.
Burov NE, Kasatkin IN, Ibragimova GV, Schulunov MV, Kosachenko VM. Comparative assessment of the hormonal status during N2O and xenon anesthesia using similar methods. Anesteziol Reanimatol 1995; 4: 57-60.
Lachmann B, Verdouw PD, Schairer W, Van Woerkens LJ, Van Daal GJ. Xenon anesthesia and circulation. 9th World Congress of Anaesthesiologists, Washington USA. May 1988: AO242.
Luttropp HH, Thomasson R, Dahm S, Persson J, Werner O. Clinical experience with minimal flow xenon anesthesia. Acta Anesthesiol Scand 1994; 38: 121-125.
Yagi M, Mashimo T, Kawaguchi T, Yoshiya I. Analgesic and hypnotic effects of subanaesthetic concentrations of xenon in human volunteers: comparison with nitrous oxide. Br J Anaesth 1995; 74: 670-673.
Luttropp HH, Rydgren G, Thomasson R, Werner O. A minimal-flow system for xenon anesthesia. Anesthesiology 1991; 75: 896-902.
Burov NY, Kornienko L, Arzamastev YeV, Korotich VN, Golubykh VL. Study of xenon toxicity in a subchronic experiment. Anesteziol Reanimatol 1998; 3: 58-60.
Lane GA, Nahrwold ML, Tait AR, Taylor-Busch M, Cohen PJ, Beaudoin AR. Anesthetics as teratogens: nitrous oxide is fetotoxic, xenon is not. Science 1980; 210: 899-890.
Baur CP, Klingler W, Jurkat-Rott K, Froeba G, Schoch E, Marx T. Xenon does not induce contracture in human malignant hyperthermia muscle. Brf J Anaesth 2000; 85: 712-716.
Froeba G, Marx T, Pazhur J, Baur C, Baeder S, Calzia E et al. Xenon does not trigger malignant hyperthermia in susceptible swine. Anesthesiology 1999; 91: 1047-1052.
Nakata Y, Goto T, Niimi Y, Morita S. Cost analysis of xenon anesthesia: a comparison with nitrous oxide-isoflurane and nitrous oxide-sevoflurane anesthesia. J Clin Anesth 1999; 11: 477-481.
Teeling A. Technical solutions to administer xenon. Presented al the Annual Meeting of the Association for Low Flow. Anesthesia Gent Belgium, September 1998: 18-19.
Tenbrinck R, Leendertse K, Erdmann W. Xenon in the Physioflex: The first clinical experience. Presented at the Annual Meeting of the Association for Low Flow. Anesthesia Gent Belgium, September 1998: 18-19.
Ferrari A, Erdmann W, Del Tacca M, Formichi B, Volta CA, Ferrari E et al. Xenon anesthesia: Clinical results and recycling of gas. Applied Cardiopulmonary Pathopysiology 1998; 7: 153-155.
Dingley J, Findlay GP, Foex BA, Mecklenburgh J, Esmail M, Little RA. A closed xenon anesthesia delivery system. Anesthesiology 2001; 94: 173-176.
Renfrew CW, Murray JM, Fee JPH. Molecular sieves for low flow xenon anesthesia. 2nd Meeting of the Association for Low Flow Anesthesia. Belfast, 1997.
Goto T, Saito H, Nakata Y, Uezono S, Ichinose F, Uchiyama M et al. Effects of xenon on the performance of various respiratory flowmeters. Anesthesiology 1999; 90: 555-563.
Giunta F, Natale G, Zucchi R, Ferrari E. Xenon anesthesia: the Italian experience. Presented at the International Congress on Xenon Anesthesia of the Association for Low Flow Anesthesia. Rotterdam. The Netherlands. September 1999.
Nakata Y, Goto T, Morita S. Comparison of inhalation inductions with xenon and sevoflurane. Acta Anesthesiol Scand 1997; 41: 1157-1161.
Burov NE, Dzhabarov DA, Ostapchnko DA, Kornienko LI, Shulunov MV. Clinical stages and subjective sensations in xenon anesthesia. Anesteziol Reanimatol 1993; 4: 7-11.
Nakata Y, Goto T, Morita S. Vecuronium-induced neuromuscular block during xenon or sevoflurane anesthesia in humans. Br J Anaesth 1998; 80: 238-240.
Ishiguro Y, Saito H, Nakata Y, Goto T, Terui K, Niimi Y, Morita S. Effect of xenon on endotracheal tube cuff. J Clin Anesth 2000; 12: 371-373.
Goto T , Saito H, Shinkai M, Nakata Y, Ichinose F, Morita S. Xenon provides faster emergence from anesthesia than does nitrous oxide-sevoflurane or nitrous oxide-isoflurane. Anesthesiology 1997; 86: 1273-1278.
Goto T, Nakata Y, Saito H, Ishiguro Y, Niimi Y, Suwa K et al. Bispectral analysis of the electroencephalogram does not predict responsiveness to verbal command in patients emerging from xenon anaesthesia. Br J Anaesth 2000; 85: 359-363.