2012, Número 4
Características de los materiales cerámicos empleados en la práctica odontológica actual.
Nevárez RA, Nevárez RMM, Bologna MRE, Serena GE, Carreón BRG, Gómez PGM, Molina FN, González GR
Idioma: Español
Referencias bibliográficas: 35
Paginas: 157-163
Archivo PDF: 180.57 Kb.
RESUMEN
El presente estudio incluye una reseña, así como una
clasificación general de los principales materiales
cerámicos empleados en la odontología actual.
Con el objetivo de revelar algunas de las características
estructurales de los materiales cerámicos, se muestran
micrografías tomadas por Microscopio Electrónico de
Barrido (MEB) a diferentes magnificaciones, de polvos
y de los cerámicos sinterizados, así mismo se
compararon algunas de las propiedades de los
cerámicos respecto a otros materiales restaurativos;
también se han descrito los principales análisis que
caracterizan las propiedades de estos materiales.
Los cerámicos deóxidos manifiestan microestructuras homogéneas de acuerdo con la
literatura, así como propiedades adecuadas para su uso
como materiales de restauración confiables. Resulta
pertinente considerar a los ionómeros de vidrio y a los
cerómeros como cerámicos híbridos por la alta
concentración de polvos cerámicos en sus fórmulas.
Discusión. La evolución de los materiales cerámicos
avanza dinámicamente y el futuro de los mismos como
materiales de uso estomatológico va en dirección de la
sustitución de los materiales metálicos y hacia una
mayor hibridación con materiales poliméricos.
REFERENCIAS (EN ESTE ARTÍCULO)
Anusavice K.J. Phillips Ciencia de los materiales dentales. Madrid España.ElsevierScience. 11º Edición;2004. Páginas:143,144, 563- 568.
Barrancos Mooney J.C. Operatoria Dental.Buenos Aires Argentina. Editorial Médica Panamericana. 3ª edición; 1999. Páginas: 265-266, 663-665
Filiberto F. Fabricación de un primer tratamiento exigente,estético y funcional, según las directrices de la Escuela de Zúrich. Quintessence (edición en español)2003; 14 (7): 341-359
Witkowski S. El sistema Pro 50 CAD/CAM con centros de producción para la técnica de fresado, rectificado y colado.Quintessence Técnica (edición en español) 2003; 14 (2): 88-101
Kurbad A, Reichel K, Basler F. Coronas primarias de cerámica pura fabricadas por CAD/CAM Diseño innovador mediante un software CEREC in Lab para coronas dobles Quintessence Técnica (edición en español) 2003; 14 (7): 377-394
Offmann A. Fabricación de prótesis combinadas con el sistema CERCON Quintessence Técnica (edición en español) 2003; 14 (4): 219-
Álvarez-Fernández MA, Peña-López JM, González-González IR, Olay-García MS. Características Generales y Propiedades de las Cerámicas Sin Metal RCOE 2003; 8(5): 525-546.
Z a n g h e l l i n i G . F i b e r - r e i n f o r c e d f r a m e w o r k andCeromerrestorations : A technical review. Signature1997;4(1):1- 5.
Maroto M. Cementos de vidrio ionómero: liberación de flúor. Rev. Soc.Odontol. Plata 2002; 15(29):17-22.
Hickel R. Trends in materials science from the point of view of a practicing dentist.Journal of the European Ceramic Society2009; 29 (7):1283-1289
Thompson J Y, Stoner B R, Piascik J R. Ceramics for restorative dentistry: Critical aspects for fracture and fatigue resistance. Materials Science and Engineering 2007; 27 (3): 565-569
Wang H, Moustafa N. Aboushelib, FeilzerA J. Strength influencing variables on CAD/CAM zirconia frameworks.Dental materials 2008; 24 (5): 633-638
Castrillón M, García C, Paucar C. Evaluación de la Influencia del Tamaño de Partícula y el Tiempo de Tratamiento Térmico Sobre las aracterísticas Físico-Mecánicas de un Compuesto de Alúmina Sinterizada Infiltrada con Vidrio de Lantano. DYNA 2007; 74 (152): 159-165.
Meza J, Chávez C, Estimación de la tenacidad a la fractura mediante el método de indentación.DYNA2003; 70 (139):53-58
Evans AG, Charles EA. Fracture toughness determinations by indentation. J AmCeram Soc. 1976; 59:371-372
GuazzatoM,Albakry M, Ringer S P, Swain M V. Strength, fracture toughness and microstructureof a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics.Dental Materials 2004; 20 (5): 449-456.
Norma: Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperatura. ASTM Internacional C1161 – 02c. Acceso permitido a:Centro de Investigación en Materiales Avanzados. 18 de abril de 2008. URL disponible en: http://www.astm.org/Standards/C1161.htm
Peixoto RT, Paulinelli. VM, Sander HH,Lanza MD, Cury LA. Poletto LT. Light transmission through porcelain.Dental Materials.2007; 23 (11): 1363-1368
NevárezRascón A., Aguilar ElguezabalA., Bocanegra Bernal M H., Bologna Molina R., Molina Frechero N., Nevárez Rascón MM, Orrantia Borunda E. Análisis de Materiales Cerámicos y Resinas Compuestas de Rehabilitación Dental. Una Introducción.Chihuahua México. Editorial Difusión de Extensión y Difusión Cultural de la Universidad Autónoma de Chihuahua. UACH Textos UniversitariosPrimera edición; 2010. Páginas: 47-52, 93-97.
Benavides de Morales M C, Elías C N, DuailibiFilho D, Gulmaraes de Oliveira L. MechanicalProper ties of Alumina- ZirconiaCompositesforCeramicAbutments.Materials Research 2004; 7 (4): 643-649.
21.Fischer H, Weib R, Telle R. Crack Healing in alumina bioceramics. Dental Materials 2008; 24 (3):328-332
De Aza H, Chevalier J, Fantozzi G, Schehl M, Torrecillas R. Crack growth resistente of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials2002; 23 (3): 937- 945
Swain M V, Rose L R. Strength limitations of transformationtoughened zirconia alloys. J Am Ceram Soc. 1986; 69 (7):511-516.
Hannink R H, Nelly P M. Muddle B C, Transformation toughening in zirconia- containing ceramics. J Am Ceram Soc. 2000; 83(3): 462- 487
Sunah A, Sjogren G. Fracture resistance of all ceramic zirconia bridges with differing phase stabilizers and quality of sintering. Dental Materials2006; 22 (8): 778-784
Celli A, Tucci A, Esposito L, Palmonari C. Fractal análisis in alumina-zirconiacomposites. Journal of European Ceramic Society 2003; 23 (3):469-479
Chevalier J, Olagnon C, Fantozzi G, Gros H. CeepBehaviour of Alumina, Ziarconia and Zirconia- Toughened Alumina . Journal of European Ceramic Society 1997;17 (6): 859-864.
Szutkowska M,Boniecki M. Subcritical crack browth in zirconiatoughened alumina (ZTA) ceramics. Journal of Materials Processing Technology2006; 175 (1-3):416-420
Piyapanna P, Ailbhe M, Aviva P. The biaxial flexural strength and fatigue property of Lava TM Y-TZP dental ceramic. Dental Materials 2007; 23 (8): 1018-1029.
Daguano J K, Santos C, Souza C R. Properties of Zr O2-Al2 O3 composite as a function of isothermal holding time. International Journal of Refractory materials and hard materials 2007; 25 (56):374-379.
Mills H, Blackburn S. Zirconia toughened by hidro-termal processing. Journal of European Ceramic Society2000; 20 (8): 1085- 1090.
Oilo M, Gjerdet N R, Tvinnereim H M. The firing procedure influences properties of zirconia core ceramic: Dental Materials2008; 24 (4): 471-475.
DeHoff P H, Berrett A, Lee R B, Anusavice K J. Thermal compatibility of dental ceramic systems using cylindrical and spherical geometries. Dental Materials 2008; 24 (6): 744-752
Bartolomé J F, Pecharramán C, Moya J S, Martín A, Pastor J Y, Liorca J. Percolative mechanism of sliding wear in alumina/zirconia composites. Journal of European Ceramic Society2006; 26 (13):2619- 2625
Calderón-Moreno J M, Arellano-LópezA R, Domínguez-Rodríguez A, Routbort J L. Microestructure and Creep Properties of Alumina/Zirconia Ceramics.Journal of European Ceramic Society1995; 15 (10): 983-988