2010, Número 5
<< Anterior Siguiente >>
Rev Med Inst Mex Seguro Soc 2010; 48 (5)
El efecto incretina y su participación en la diabetes mellitus tipo 2
Quintanilla-García C, Zúñiga-Guajardo S
Idioma: Español
Referencias bibliográficas: 46
Paginas: 509-520
Archivo PDF: 85.79 Kb.
RESUMEN
Las incretinas son hormonas producidas en el tracto
gastrointestinal en respuesta a la ingesta de alimentos
y con efecto sobre las células de los islotes
de Langerhans, que aumentan la secreción y liberación
de la insulina y disminuyen la secreción de
glucagón dependiendo de la glucosa circulante. Las
principales incretinas son el GLP1 y el GIP. El “efecto
incretina” consiste en la mayor liberación de insulina
por el páncreas cuando el estímulo de glucosa
es gastrointestinal, comparado a cuando el estímulo
es endovenoso. Este efecto está alterado en pacientes
con diabetes tipo 2. El efecto incretina se
puede aumentar de dos formas: producir un GLP1
que no sea inactivado por DPP4, es decir, un análogo
de GLP1; o inhibir a la enzima que desactiva a
las incretinas mediante lo que se llama inhibidores
de DPP4. Hay dos análogos de GLP1, exenatide y
liraglutide, y algunos otros en investigación. Hay tres
inhibidores de DPP4: sitagliptina, vildagliptina y
saxagliptina. Con ellos se logrará mejorar la glucemia
en pacientes con DM2 y, por lo tanto, la
hemoglobina glucosilada, con un perfil de seguridad
adecuado, baja posibilidad de hipoglucemias
y sin incremento o disminución de peso en los
pacientes.
REFERENCIAS (EN ESTE ARTÍCULO)
Salehi M, Beneridkt A, D’Alessio DA. Targeting β cell mass in type 2 diabetes: promise and limitations of new drugs based on incretins. Endocr Rev 2008;29(3):367-379.
Chia CW, Egan JM. Incretin based therapies in type 2 diabetes mellitus. J Clin Endocrinol Metab 2008;93(10):3703-3716.
Murphy KG, Dhillo WS, Bloom SR. Gut peptides in the regulation of food intake and energy homeostasis. Endocr Rev 2006;27(7):719-727.
D’Alessio DA, Denney AM, Hermiller LM, Prigeon RL, Martin JM, Tharp WG, et al. Treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin improves fasting islet-cell function in subjects with type 2 diabetes. J Clin Endocrinol Metab 2009; 94(1):81-88.
Vilsboll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced post-prandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 2001;50(3):609-613.
Abu-Hamdah R, Rabiee A, Meneilly GS, Shannon RP, Andersen DK, Elahi D. The extrapancreatic effects of glucagon-like peptide-1 and related peptides. J Clin Endocrinol Metab 2009;94(6): 1843-1852.
Kjems LL, Holst JJ, Volund A, Madsbad S. The influence of GLP1 on glucose-stimulated insulin secretion: effects on β-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 2003;52(2):380-386.
Gutzwiller JP, Goke B, Drewe J, Hildebrand P, Ketterer S, Handschin D, et al. Glucagon like peptide-1: a potent regulator of food intake in humans. Gut 1999;44(1):81-86.
Kendall DM, Riddle MC, Rosenstock J, Zhuang D, Kim DD, Fineman MS, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 2005;28 (5):1083-1091.
Ebert R, Creutzfeldt W. Gastrointestinal peptides and insulin secretion. Diabetes Metab Rev 1987;3 (1):1-26
Vilsboll T, Brock B, Perrild H, Levin K, Lervang HH, Kolendorf K, et al. Liraglutide, a once-daily human GLP-1 analogue improves β-cell function and arginine-stimulated insulin secretion at hyperglycaemia in patients with Type 2 diabetes mellitus. Diabet Med 2008;25:152-156.
Kieffer TJ, Habener JF. The glucagon-like peptides. Endocr Rev 1999;20(6):876-913.
Baggio LL, Drucker DJ. Biology of incretins: GLP1 and GIP. Gastroenterology 2007;132(6):2131-2157.
Knop FK, Vilsboll T, Hojberg PV, Larsen S, Madsbad S, Volund A, et al. Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes 2007;56(8):1951-1959.
Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagons-like peptide 1 (7-36 amide) but not of synthetic human gastric inhibitory polypeptide in patients type 2 diabetes mellitus. J Clin Invest 1993; 91(1):301-307.
Rachman J, Barrow BA, Levy JC, Turner RC. Near normalization of diurnal glucose concentrations by continuous administration of glucagon–like peptide 1 (GLP1) in subjects with NIDDM. Diabetologia 1997;4(2)0:205-211.
Zander M, Madsbad S, Madsen JL, Holst JJ. Effects of 6-week course of glucagon like peptide 1 on glycaemic control, insulin sensitivity, and β- cell function in type 2 diabetes: a parallel-group study. Lancet 2002;359(9309):824-830.
Bonner-Weir S. Is let growth and development in the adult. J Mol Endocrinol 2000;24:297-302.
Finegood DT, Scaglia L, Bonner Weir S. Dynamics of β-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 1995;44:249-256.
Wang H, Iezzi M, Theander S, Antinozzi PA, Gauthier BR, Halban BA, et al. Supression of Pdx- 1 perturbs proinsulin processing, insulin secretion and GLP1 signaling in INS-1 cells. Diabetologia 2005;48(4):720-731.
Ghofaili KA, Fung M, Ao Z, Meloche M, Shapiro RJ, Warnock GL, et al. Effect of exenatide on β cell transplantation in type 1 diabetes. Transplantation 2007;83(1):24-28.
Amiranoff B, Vauclin-Jacques N, Laburthe M. Functional GIP receptors in a hamster pancreatic β cell line, in 111: specific binding and biological effects. Biochem Biophys Res Commun 1984; 123(2):671-676.
Gromada J, Bokvist K, Ding WG, Holst JJ, Nielsen JH, Rorsman P. Glucagon like peptide 1(7-36) amide stimulates exocytosis in human pancreatic β cells by bth proximal and distal regulatory steps in stimulus-secretion coupling. Diabetes 1998;47 (1):57-65.
Ehses JA, Casilla VR, Doty T, Pospisilik JA, Winter KD, Demuth HU, et al. Glucose-dependent insulinotropic polypeptide promotes β (INS-1) cell survival via cyclic adenosine monophosphate-mediated caspase-3 inhibition and regulation of p38 mitogenactivated protein kinase. Endocrinology 2003;144 (10):4433-4445.
Conarello SL, Li Z, Ronan J, Roy RS, Zhu L, Jiang G, et al., Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc Natl Acad Sci USA 2003;100(11):6825-6830.
Thorens B, Porret A, Buhler L, Deng SP, Morel P, Widmann C. Cloning and functional expression of the human islet GLP1 receptor. Demonstration that exendin-4 is an agonist and exendin 9-39 an antagonist of receptor. Diabetes 1993;42(11): 1678-1682.
Kolterman OG, Kim DD, Shen L, Ruggles JA, Nielsen LL, Fineman MS, et al. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am J Health Syst Pharm 2005;62(2):173-181.
Nauck MA, Duran S, Kim D, Johns D, Northrup J, Festa A, et al. A comparison of twice daily exenatide and biphasic insulin aspart in patients with type 2 diabetes who were suboptimally controlled with sulfonylurea and metformin: a non inferiority study. Diabetologia 2007;50(2):259-267.
DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 2005;28(5):1092-1110.
Zinman B, Hoogwerf BJ, Durán-García S, Milton DR, Giaconia JM, Kim DD, et al. The effect of adding exenatide to a thiazolidinedione in suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 2007;146(7):477-485.
Agerso H, Jensen LB, Elbrond B, Rolan P, Zdravkovic M. The pharmacokinetics, pharmaco-dynamics, safety and tolerability of NN2211, a new long-acting GLP1 derivative, in healthy men. Diabetologia 2002;45(2):195-202.
Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA 2007;298(2): 194-206.
Garber A, Henrry R, Ratner R, García-Hernández PA, Rodríguez-Pattzi H, Olvera I, et al. Liraglutide versus glimepirine monotherapy for type 2 diabetes (LEAD 3Mono): a randomized, 52 week, phase III, double-blind parallel. Treatment trial. Lancet 2009;373(9662):473-481.
Marre M, et al. Liraglutride plus SU versus TZD plus SU. LEAD 1. Diabetic Medicine 2009;10:
Aschner P, Kipnes MS, Lunceford JK, Sánchez M, Mickel C, Williams-Herman DE. Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care 2006;29(12): 2632-2637.
Ahren B, Landin-Olsson M, Jansson PA, Svensson M, Holmes D, Schweizer A. Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon in type 2 diabetes. J Clin Endocrinol Metab 2004; 89(5):2078-2084.
Bergman A, Ebel D, Liu F, Stone J, Wang A, Zeng W, et al. Absolute bioavailability of sitagliptin, an oral dipeptdiylpeptidase-4 inhibitor, in healthy volunteers. Biopharm Drug Dispos 2007;2(6)8:315-322.
He YL, Sadler BM, Sabo R, Balez S, Wang Y, Campestrini J, et al. The absolute oral bioavailability and population-based pharmacokinetic modeling of a novel dipeptidyl peptidase IV inhibitor, vildagliptin, in healthy volunteers. Clin Pharmacokinet 2007;46(9):787-802.
He YL, Sabo R, Campestrini J, Wang Y, Ligueros- Saylan M, Lasseter KC, et al. The influence of hepatic impairment on the pharmacokinetics of the dipeptidyl peptidase IV inhibitor vildagliptin. Eur J Clin Pharmacol 2007;63(7):677-686.
Charbonnel B, Karasik A, Liu J, Wu M, Meininger G. Sitagliptin Study 019 Group Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care 2006;29(12):2638-2643.
Rosenstock J, Brazg R, Andryuk PJ, Lu K, Stein P; Sitagliptin Study 019 Group. Efficacy and safety of dipeptidyl peptidase-4 inhibitor, sitagliptin added to ongoing pioglitazona therapy in patients with type 2 diabetes: a 24 week, multicenter, randomized, double blinded, placebo-controlled, parallel group study. Clin Ther 2006;28(19):1556- 1568.
Schweizer A, Couturier A, Foley JE, Dejager S. Comparison between vildagliptin and metformin to sustain reductions in HbA(1c) over 1 year in drug-naïve patients with type 2 diabetes. Diabet Med 2007;24(9):955-961.
Bosi E, Camisasca RP, Collober C, Rochoette E, Dejager S. Effects of vildagliptin on glucose control over 24 weeks in patients with type 2 diabetes inadequately controlled with metformin. Diabetes Care 2007;30(4):890-895.
Rosenstock J, Sankoh S, List JF. Glucose-lowering activity of the dipeptidyl peptidase-4 inhibitor saxagliptin in drugnaive patients with type 2 diabetes. Diabetes Obes Metab 2008;10:376-386.
Jadzinsky M, Pfützner A, Paz-Pacheco E, Xu Z, Allen E, Chen R; CV181-039 Investigators. Saxagliptin given in combination with metformin as initial therapy improves glycaemic control in patients with type 2 diabetes compared with either monotherapy: a randomized controlled trial. Diabetes Obes Metab 2009;11:611-622.
Kim D, MacConell L, Zhuang D, Kothare PA, Trautmann M, Fineman M, et al. Effects of onceweekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes. Diabetes Care 2007;30(6):1487-1493.