2012, Número 2
<< Anterior
Investigación en Discapacidad 2012; 1 (2)
Aplicaciones biofísicas de la fotoacústica
Lomelí MPA, Castellanos ÁNP, Méndez GMM, Cruz OA, Jiménez PJL
Idioma: Español
Referencias bibliográficas: 25
Paginas: 90-94
Archivo PDF: 61.53 Kb.
RESUMEN
En este artículo se presentan diversas aplicaciones posibles de la espectroscopia fotoacústica (PAS, por sus siglas en inglés) a la medicina que se pueden llevar a cabo con un equipo básico (lámpara de xenón, monocromador pulsador óptico, fibra óptica, amplificador lock-in, celda fotoacústica y computadora personal). Como posible aplicación de la PAS se puede mencionar, por ejemplo, la selección del láser más adecuado para hacer una fotoestimulación en el proceso de cicatrización. También se menciona que se pueden conocer algunas propiedades térmicas y ópticas de los tejidos, como es la difusividad térmica, o el coeficiente de absorción óptica. El objetivo de este trabajo es despertar el interés de los médicos por técnicas de diagnóstico relativamente nuevas, no-invasivas y no-ionizantes, con la ventaja de que no es necesaria la preparación de la muestra de estudio.
REFERENCIAS (EN ESTE ARTÍCULO)
Rosencwaig A, Gersho A. Theory of the photoacoustic effect with solids. Journal of Applied Physics 1976; 47 (1): 64-69.
Florido CAE. Determinación de la efusividad térmica en sólidos mediante la técnica fotoacústica, Tesis para obtener el grado de Maestría en Tecnología Avanzada, CICATA-IPN, Junio de 2004, 7-38.
Bozkurt A, Rosen A, Rosen H, Onaral B. A portable near infrared spectroscopy system for bedside monitoring of newborn brain. Biomed Eng Online, 2005; 4(1):29.
Jacobs JJ, Gilbert JL, Robert M. Urban, Current concepts review corrosion of metal orthopaedic implant. J of Bone and Joint Surgery. 1998; 80:268-282.
Bozena J, Bukouski RJ, Christ A, Pogoda T. Photoacoustic detection of drug diffusion into a membrane: theory and numerical analysis. International Journal of Heat and Mass Transfer 2002; 45: 4515-4523.
Peña RG, Méndez GM, Calderón AA, Cruz OA, Sánchez S. Caracterización térmica de hueso y sustratos metálicos para uso biomédico. Biomecánica 2000; 8 (1): 40-43.
Silveira FLFD, Barja PR, Acosta-Avalos D. Photoacoustic evaluation the penetration of piroxicam gel applied with phonophoresis into human skin. Journal of Physics, Conference Series IOP Publishing Ltd. 2010; 214: 1-5.
Simpson CR, Kohl M, Essenpreis M, Cope M. Near infrared optical properties of ex-vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys Med Biol 1998; 43: 2465-2478.
Schendzielorz A, Bui Duc Hanh, Reinhard H, Neubert H, Wartewig S. Penetration studies of clotrimazole from semisolid formulation using step-scan FT-IR photoacoustic spectroscopy. Pharmaceutical Research 1999; 16 (1): 42-45.
Laufer J, Simpson CR, Kohl M, Essenpreis M, Cope M. Effect of temperature on the optical properties of ex-vivo human dermis. Phys Med Biol 1998; 43: 2479-2489.
UCL. Biomedical Optics Research Laboratory. Measurment of skin optical properties. http://www.medphys.ucl.ac.uk/research/borg/research/NIR_topics/skin/skinoptprop.htm
Xiao P, Cowen JA, Imhot RE. In-vivo transdermal drug diffusion depth profiling-a new approach to opto-thermal signal analysis. Analytical Sciences 2001; 17: s349-s352.
Simpson CR, Koh M, Essenpreis M, Cope M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo technique. Phys Med Biol 1998; 2405-2478.
Bozena J, Bukouwski JR, Chrit A, Pogoda T. Photoacoustic detection of drug diffusion into a membrane: theory and numerical analysis. International Journal of Heat and Mass Transfer 2002; 45: 4515-4523.
Favazza PC, Jassim O, Cornelius AL, Wang VL. In vivo photoacoustic microscopy of human cutaneous microvascular and nevus. J of Biomedical Optics 2011; 16 (1): 016015.
Kwang Hyun, Lihong V Wang. Deep reflection-mode photoacoustic imaging of biological tissue. Journal of Biomedical Optics Letters. 2007; 12 (6): 060503.
Halmeir M, Scherzer O, Zangerl G. A reconstruction algorithm for photoacoustic imaging based on the nonuniform FFT. IEEE Trans Ultrason Ferroelectr Freq Control. 2009; 28 (11):1727-1735.
Changhui Li, Lihong V Wang. Photoacoustic tomography and sensing inbiomedicine. Phys Med Biol 2009; 45 (19): R59-R97.
Marion A, Boutet J, Debourdeau M, Dinten JM, Vray D. A quantitative study to design an experimental setup for photoacoustic imaging. 33rd Annual International Conference of the IEEE EMBS, 2011.
Yae-Lin Sheu, Cheng-Ying Chou, Bao-Yu Hsieh, Pai-Chi Li. Image reconstruction in intravascular photoacoustic imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2011; 58 (10): 2067-2077.
Su JL, Wang B, Wilson EK, Bayer CL, Yun-Sheng Chen, Seungsoo Kim, Kimberly A. Homan, Stanislav Y. Emelianov, seen advances in clinical and biomedical applications of photoacoustic imaging. Expert Opin Med Diagn 2010; 4 (6): 497-510.
Beard P, Biomedical photoacoustic imaging, Interface, 2011, 1(4), 602-631.
Zhang FH, Maslov K, Stoica G, Wang LV. Imaging acute thermal burns by photoacoustic microscopy. J of Biomedical Optics 2006; 11 (5): 054033.
Monstrey S, Hoeksema H, Verbelen J, Pirayesh A, Blondeedl P. Assessment of burn depth and burn wound healing potential. Burns 2008; 34: 761-769.
Leonardi L, Sowa GM, Payette RJ, Hamantsch HH. Near-infrared spectroscopy and imaging: A new approach to assess burn injuries. Clinical Note, American Clinical Laboratory 2000: 20-22.