2012, Número 5
<< Anterior Siguiente >>
Bol Med Hosp Infant Mex 2012; 69 (5)
Ácido docosahexanoico y ácido araquidónico en neonatos: ¿el aporte que reciben es suficiente para cubrir sus necesidades?
Bernabe-García M, Villegas SR, López AM
Idioma: Español
Referencias bibliográficas: 54
Paginas: 337-346
Archivo PDF: 228.80 Kb.
RESUMEN
Se describen las bases fisiológicas de la acción de los ácidos grasos poliinsaturados de las familias n-6 y n-3, así como de sus productos
finales: el ácido araquidónico y el ácido docosahexaenoico, respectivamente, para identificar su importancia durante la etapa fetal en las
funciones estructurales críticas al llegar a las 40 semanas de gestación. El déficit de los ácidos grasos poliinsaturados se relaciona con
patologías en los niños pretérmino que no lograron la acreción adecuada, como la retinopatía del prematuro, la enterocolitis necrosante o
la displasia broncopulmonar, entre otras. Se analizan los trabajos que evalúan el efecto del suplemento con diferentes concentraciones de
ácidos grasos poliinsaturados sobre funciones neurológicas y visuales y crecimiento en los recién nacidos. Se abordan las necesidades
de ácido docosahexaenoico y ácido araquidónico en esta etapa de la vida, y se comparan con el aporte que se puede lograr mediante la
alimentación con leche humana y con las diferentes fórmulas para recién nacidos pretérmino, término y lactantes.
Dado que el niño pretérmino nace con deficiencias tisulares pero con requerimientos aumentados de estos ácidos grasos, parece ser
insuficiente el aporte con las fórmulas suplementadas comerciales actuales. La recomendación final es la alimentación de los niños con
leche humana, ofreciendo a la madre sugerencias de consumo de fuentes con alto contenido de ácido docosahexaenoico, sobre todo si
su hijo fue pretérmino.
REFERENCIAS (EN ESTE ARTÍCULO)
De Caterina R. n-3 fatty acids in cardiovascular disease. N Engl J Med 2011;364:2439-2450.
Muskiet FAJ, Fokkema MR, Schaafsma A, Boersma ER, Crawford MA. Is docosahexaenoic acid (DHA) essential? Lessons from DHA status regulation, our ancient diet, epidemiology and randomized controlled trials. J Nutr 2004;134:183-186.
Le HD, Meisel JA, de Meijer VE, Gura KM, Puder M. The essentiality of arachidonic acid and docosahexaenoic acid. Prostaglandins Leukot Essent Fatty Acids 2009;81:165-170.
Uauy R. Dangour AD. Fat and fatty acid requirements and recommendations for infants of 0-2 years and children of 2-18 years. Ann Nutr Metab 2009;55:76-96.
Lin YH, Llanos A, Mena P, Uauy R, Salem N, Pawlosky RJ. Compartmental analyses of 2H5-a linolenic acid and 13C-Ueicosapentaenoic acid toward synthesis of plasma labeled 22:6n-3 in newborn term infants Am J Clin Nutr 2010;92:284- 293.
Kuipers RS, Luxwolda MF, Offringa PJ, Boersma ER, Dijck- Brouwer DA, Muskiet FA. Fetal intrauterine whole body linoleic, arachidonic and docosahexaenoic acid contents and accretion rates. Prostaglandins Leukot Essent Fatty Acids 2012;86:13-20.
Guesnet P, Alessandri JM. Docosahexaenoic acid (DHA) and the developing central nervous system (CNS)—Implications for dietary recommendations. Biochimie 2011;93:7-12.
Hoffman DR, Boettcher JA, Diersen-Schade DA. Toward optimizing vision and cognition in term infants by dietary docosahexaenoic and arachidonic acid supplementation: a review of randomized controlled trials. Prostaglandins Leukot Essent Fatty Acids 2009;81:151-158.
Hsieh AT, Brenna JT. Dietary docosahexaenoic acid but not arachidonic acid influences central nervous system fatty acid status in baboon neonates. Prostaglandins Leukot Essent Fatty Acids 2009;81:105-110.
Innis SM. Omega-3 fatty acids and neurodevelopment to 2 years of age: do we know enough for dietary recommendations? J Pediatr Gastroenterol Nutr 2009;48(suppl 1):S16-S24.
Schmitz G, Ecker J. The opposing effects of the n-3 and n-6 fatty acids. Prog Lipid Res 2008;47:147-155.
Waitzberg DL, Torrinhas RS. Fish oil lipid emulsions and immune response: what clinicians need to know. Nutr Clin Pract 2009;24:487-499.
Serhan CN. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol 2007;25:101-137.
Field CJ, Clandinin MT, Van Aerde JE. Polyunsaturated fatty acids and T-cell function: implications for the neonate. Lipids 2001;36:1025-1032.
Mena P, Uauy R. Grasas. En: Koletzko B, Cooper P, Makrides M, Garza C, Uauy R, Wang W, eds. Nutrición Pediátrica en la Práctica. Basilea: Karger; 2010. pp. 47-51.
Carlson SE, Werkman SH, Peeples JM, Cooke RJ, Tolley EA. Arachidonic acid status correlates with first year growth in preterm infants. Proc Natl Acad Sci USA 1993;90:1073-1077.
Clandinin MT, Chappell JE, Heim T, Swyer PR, Chance GW. Fatty acid utilization in perinatal de novo synthesis of tissues. Early Hum Dev 1981;5:355-366.
Sanders TA, Naismith DJ. A comparison of the influence of breast-feeding and bottle-feeding on the fatty acid composition of the erythrocytes. Br J Nutr 1979;41:619-623.
Putman JC, Carlson SE, DeVoe PW, Barness LA. The effect of variations in dietary fatty acids on the fatty acid composition of erythrocyte phosphatidylcholine and phosphatidylethanolamine in human infants. Am J Clin Nutr 1982;36:106-114.
Lapillonne A, Jensen CL. Reevaluation of the DHA requirement for the premature infant. Prostaglandins Leukot Essent Fatty Acids 2009;81:143-150.
Cheatham CL, Colombo J, Carlson SE. N-3 fatty acids and cognitive and visual acuity development: methodologic and conceptual considerations. Am J Clin Nutr 2006;83(suppl 6):S1458-S1466.
Simmer K, Patole S. Long chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst Rev 2004;1:CD000375 update in Cochrane Database Sys Rev 2008;1:CD000375.
Carlson SE, Cooke RJ, Werkman SH, Tolley EA. First year growth of preterm infants fed standard compared to marine oil n-3 supplemented formula. Lipids 1992;27:901-907.
Calrson SE, Werkman SH, Tolley EA. Effect of long-chain n-3 fatty acid supplementation on visual acuity and growth of preterm infants with and without bronchopulmonary dysplasia. Am J Clin Nutr 1996;63:687-697.
Ryan AS, Montalto MB, Groh-Wargo S, Mimouni F, Sentipal- Walerius J, Doyle J, et al. Effect of DHA-containing formula on growth of preterm infants to 59 weeks postmenstrual age. Am J Hum Biol 1999;11:457-467.
Lapillonne A, Carlson SE. Polyunsaturated fatty acids and infant growth. Lipids 2001;36:901-911.
Clandinin MT, Van Aerde JE, Merkel KL, Harris CL, Springer MA, Hansen JW, et al. Growth and development of preterm infants fed infant formulas containing docosahexaenoic acid and arachidonic acid. J Pediatr 2005;146:461-468.
Collins CT, Makrides M, Gibson RA, McPhee AJ, Davis PG, Doyle LW, et al. Pre- and post-term growth in pre-term infants supplemented with higher-dose DHA: a randomized controlled trial. Br J Nutr 2011;105:1635-1643.
López-Alarcón M, Bernabe-García M, Del Prado M, Rivera D, Ruiz G, Maldonado J, et al. Docosahexaenoic acid administered in the acute phase protects the nutritional status of septic neonates. Nutrition 2006;22:731-737.
López-Alarcón M, Bernabe-García M, Del Valle O, González- Moreno M, Villegas R. Oral administration of docosahexaenoic acid attenuates interleukin-1β response and clinical course of septic neonates. Nutrition 2012;28:384-90
Chew EY. Fatty acids and retinopathy. N Engl J Med 2011;364:1970-1971.
Pawlik D, Lauterbach R, Turyc E. Fish-oil fat emulsion supplementation may reduce the risk of severe retinopathy in VLBW infants. Pediatrics 2011;127:223-228.
Raghuveer ST, Bloom TB. A paradigm shift in the prevention of retinopathy of prematurity. Neonatology 2011;100:116-129.
Manley BJ, Makrides M, Collins CT, McPhee AJ, Gibson RA, Ryan P, et al. High-dose docosahexaenoic acid supplementation of preterm infants: respiratory and allergy outcomes. Pediatrics 2011;128:e71-e77.
Martin CR, Dasilva DA, Cluette-Brown JE, Dimonda C, Hamill A, Bhutta AQ, et al. Decreased postnatal docosahexaenoic and arachidonic acid blood levels in premature infants are associated with neonatal morbidities. J Pediatr 2011;159:743-749.
Carlson SE, Montalto MB, Ponder DL, Werkman SH, Korones SB. Lower incidence of necrotizing enterocolitis in infants fed a preterm formula with egg phospholipids. Pediatr Res 1998;44:491-498.
Fewtrell MS, Morley R, Abbott RA, Singhal A, Isaacs EB, Stephenson T, et al. Double-blind, randomized trial of long-chain polyunsaturated fatty acid supplementation in formula fed to preterm infants. Pediatrics 2002;110:73-82.
Koletzko B, Lien E, Agostoni C, Böhles H, Campoy C, Cetin I, et al. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. J Perinat Med 2008;36:5-14.
Brenna JT, Varamini B, Jensen RG, Diersen-Schade DA, Boettcher JA, Arterburn LM. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr 2007;85:1457-1464.
Imhoff-Kunsch B, Stein AD, Villalpando S, Martorell R, Ramakrishnan U. Docosahexaenoic acid supplementation from mid-pregnancy to parturition influenced breast milk fatty acid concentrations at 1 month postpartum in Mexican women. J Nutr 2011;141:321-326.
Castro-González MI, Ojeda VA, Montaño BS, Ledesma CE, Pérez-Gil RF. Evaluación de los ácidos grasos n-3 de 18 especies de pescados marinos mexicanos como alimentos funcionales. Arch Latinoam Nutr 2007:57;85-93.
Mozaffarian D, Rimm EB. Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA 2006;296:1885-1899.
Koletzko B, Cetin I, Brenna TJ. Perinatal Lipid Intake Working Group. Dietary fat intakes for pregnant and lactating women. Br J Nutr 2007;98:873-877.
FAO/WHO. Fats and oils in human nutrition. Report of a Joint Expert consultation. FAO Food Nutr Pap 1994;57:1-147.
Food and Drug Administration (FDA). United States Department of Health and Human Services. Disponible en: http:// www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?filter =DHASCO&sortColumn=%263%2C3K%24Y%3D%0D%0A &rpt=grasListing
Koletzko B, Baker S, Cleghorn G, Neto UF, Golapan S, Hernell O, et al. Global standard for the composition of infant formula: recommendations of an ESPGHAN coordinated international expert group. J Pediatr Gastroenterol Nutr 2005;41:584-599.
Australia and New Zealand National Health and Medical Research Council. Nutrient reference values for Australia and New Zealand including recommended dietary intakes. Reference no. N35, N36, N37; 2006. Disponible en: http://www. nhmrc.gov.au/publications/synopses/n35syn.htm
The Commission of the European Communities. Commission Directive 2006/141/S of 22 December 2006 on infant formulae and amending Directive 1999/21/EC. Official Journal of the European Union, 30.12.2006, L 401/1-L 401/33. Disponible en: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri= OJ:L:2006:401:0001:0033:EN:PDF
International Society for the Study of Fatty Acids and Lipids (ISSFAL). Recommendations of the second statement on dietary fats in infant nutrition, 2008. Disponible en: http:// www.issfal.org.uk/index.php/pufa-recommendations-mainmenu- 146.
Klein CJ. Nutrient requirements for preterm infant formulas. J Nutr 2002;132(suppl 1):S1395-S1577.
van Goor SA, Smit EN, Schaafsma A, Dijck-Brouwer DA, Muskiet FA. Milk of women with lifetime consumption of the recommended daily intake of fish fatty acids should constitute the basis for the DHA contents of infant formula. J Perinat Med 2008;36:548-549.
Saldanha LG, Salem N, Brenna TJ. Workshop on DHA as a required nutrient: overview. Prostaglandins Leukot Essent Fatty Acids 2009;81:233-236.
Smithers LG, Gibson RA, McPhee A, Makrides M. Higher dose of docosahexaenoic acid in the neonatal period improves visual acuity of preterm infants: results of a randomized controlled trial. Am J Clin Nutr 2008;88:1049-1056.
Lien EL. Toxicology and safety of DHA. Prostaglandins Leukot Essent Fatty Acids 2009;81:125-132.