2012, Número 3
<< Anterior Siguiente >>
Rev Mex Pediatr 2012; 79 (3)
Desarrollo embriológico y evolución anatomofisiológica del corazón (Segunda parte)
Gómez-Gómez M, Danglot-Banck C, Santamaría-Díaz H, Riera-Kinkel C
Idioma: Español
Referencias bibliográficas: 48
Paginas: 144-150
Archivo PDF: 628.96 Kb.
FRAGMENTO
Sexta y séptima semanas de vida
Los principales acontecimientos de la embriogénesis del corazón entre el día 36 y 49 son: a) El cierre del tabique conal del infundíbulo y b) El cierre de la parte membranosa del tabique ventricular, el que ordinarimente se cierra entre los días 38 y 45 de de la gestación. Al final de la séptima semana el corazón llega a su etapa final de desarrollo.
REFERENCIAS (EN ESTE ARTÍCULO)
Langman J. Medical embryology. 2a ed. Baltimore: Williams & Wilkins; 1969.
Streeter GL. Developmental horizons in human embryos. Age groups XI to XXIII En: Embryology Reprint. Washington, DC: Carnegie Institute; 1951: II.
Mall FP. Report upon the collection of human embryos at the Johns Hopkins University. The Anatomical Record. 1911; 5: 343-57.
http://pediatriccardiology.uchicago.edu/index.htm.embriology. accesada: 21 08 2012.
Van Praagh R. Embriology. In: Keane, editor. Nadas pediatric cardiology. 2ª ed. Philadelphia: WB Saunders Company; 2006.
Arteaga-Martínez M, Gallegos-Serrano SP. Desarrollo del corazón. México: Departamento de Embriología, UNAM; 2010.
Moorman A, Webb S, Brown NA, Lamers W, Anderson RH. Development of the Heart: (1) formation of the cardiac chambers and arterial trunks. Heart 2003; 89: 806-14.
Anderson RH, Webb S, Brown NA, Lamers W, Moorman A. Development of the Heart: (2) Septation of the atriums and ventricles. Heart 2003; 89: 949-58.
Anderson RH, Webb S, Brown NA, Lamers W, Moorman A. Development of the Heart: (3) Formation of the ventricular outflow tract, arterial valves, and intrapericardial arterial trunks. Heart 2003; 89: 1110-8.
Salazar-García M, Sánchez-Gómez C, Contreras-Ramos A, Carrillo-Ávalos BA, Revilla-Monsalve MC, Palomino-Garibay MA. Los segmentos cardiacos primitivos, su implicación en la cardiogénesis normal aplicada a la cardiología pediátrica. Arch Cardiol Mex 2006; 76(Supl 4): S46-57.
Nilsson L, Hamberger L. Nacer. La gran Aventura. Barcelona: Salvat Editores; 2006.
Ernst LM. Heart and blood vessels. En: Ernst LM, Ruchelli ED, Huff DS, editors. Color atlas of fetal and neonatal histology. New York: Springer; 2011: 3-18.
García-Cavazos R, Gómez-Saviñón VG. Embriogénesis cardiovascular. En: Ruesga-Zamora EA, Saturno-Chiu G, editores. Cardiología. 2a ed. México: Manual Moderno; 2011: 55-60.
Baldwin HS, Dees E. Embriology and physiology of the cardiovascular system. En: Gleason CA, Devaskar SV, editors. Avery’s diseases of the newborn. 9a ed. Philadelphia: Elsevier Saunders; 2012.
Snarr BS, Wessels A, McQuinn T. Cardiovascular development. En: Polin RA, Fox WW, Abman SH, editors. Fetal and neonatal physiology. 4a ed. Philadelphia: Elsevier Saunders; 2011: 696-704.
De la Cruz MV, Markwald RR, editors. Living morphogenesis of the heart. Boston: Birkhauser; 2000.
Harvey RP, Rosenthal N, editors. Heart development. San Diego: Academic Press; 1999.
Clark EB, Nakazawa M, Takao A, editors. Etiology and morphogenesis of congenital heart disease: Twenty years of progress in genetics and developmental biology. Armonk, NY: Futura Publishing; 2000.
Reyes-Téllez GJ, López-Cuellar MR, Díaz-Araúzo AE. División anatomo-embriológica de los ventrículos. Concepto que debe incorporarse en la enseñanza de la anatomía. Rev Mex Cardiol 2003; 14(2): 61-3.
Sizarov A, Ya J, de Boer BA, Lamers WH, Christoffels VM, Moorman AFM. Formation of the building plan of the human heart. Morphogenesis, growth and differentiation. Circulation 2011; 123: 1125-35.
Module 16. Cardiovascular system. Embriology. Universidad de Fribourg, Laussane, accesado el 15 03 2012. http://www.embriology.ch/anglais/pcardio/objetcardio01.html
Sedmera D, McQuinnn T. Embryogenesis of the heart muscle. Heart Failure Clin 2008; 4: 235-45.
Abdulla R, Blew GA, Holterman MJ. Cardiovascular embryology. Pediatric Cardiol 2004; 25: 191-200.
Moorman AEM, Brown N, Anderson RH. Embriology of the heart. In: Anderson RH, Baker EJ, Penny D, Redington AN, Rigby ML, Wernobsky G, editors. Pediatric cardiology. 3a ed. Philadelphia: Churchill Livingstone, Elsevier; 2010: 37-55.
Moorman AF, Christoffels VM. Cardiac chamber formation: development, genes, and evolution. Physiol Rev 2003; 83: 1223-67.
Asami I. Partitioning of the arterial end of the embryonic heart. In: Van Praagh R, Takao A, editors. Etiology and morphogenesis of congenital heart disease. Mount Kisco, NY: Futura Publishing; 1980: 51.
Holterman MJ, Oladapo A, Abdulla R. Clinically relevant embryology: new approach to education. Washington, DC: American Academy of Pediatrics, 1999.
Kirby ML. Cardiac development. New York: Oxford University Press; 2007.
Wellman C, McNultyJA. Desarrollo del corazón. http://www.mainframeheartdevelopment.mht.
Ahmad F, Seidman JG, Seidman CE. The genetic basis for cardiac remodeling. Annu Rev Genomics Hum Genet 2005; 6: 185-92.
Gourdie RG, Harris BS, Bond J, Justus C, Hewett KW, O’Brien TX et al. Development of the cardiac pacemaking and conduction system. Birth Defects Res C Embryo Today 2003; 69: 46-57.
Arteaga-Martínez M, Gallegos-Serrano SP. Desarrollo del sistema de conducción. México. Departamento de Embriología, UNAM; 2010.
Kamino K. Optical approaches to ontogeny of electrical activity and related functional organization during early heart development. Physiol Rev 1991; 71: 53-91.
Chuck ET, Freeman DM, Watanabe M, Rosenbaum DS. Changing activation sequence in the embryonic chick heart. Implications for the development of the His-Purkinje system. Circ Res 1997; 81: 470-6.
Reckova M, Rosengarten C, deAlmeida A, Stanley CP, Wessels A, Gourdie RG et al. Hemodynamicsis a key epigenetic factor in development of the cardiac conduction system. Circ Res 2003; 93: 77-85.
Rentschler S, Vaidya DM, Tamaddon H, Degenhardt K, Sassoon D, Morley GE et al. Visualization and functional characterization of the developing murine cardiac conduction system. Development 2001; 128: 1785-92.
Myers DC, Fishman GI. Toward an understanding of the genetics of murine cardiac pacemaking and conduction system development. Anat Rec 2004; 280A: 1018-21.
Sedmera D. Development of cardiac conduction system in mammals. J Appl Biomed 2007; 5: 115-23.
Mommersteeg MT, Hoogaars WM, Prall OW, de Gier-de Vries C, Wiese C, Clout DE et al. Molecular pathway for the localized formation of the sinoatrial node. Circ Res 2007; 100: 354-62.
Hoogaars WM, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LY et al. Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev 2007; 21: 1098-112.
Moorman AF, Christoffels VM. Cardiac chamber formation: development, genes, and evolution. Physiol Rev 2003; 83: 1223-67.
Moskowitz IP, Pizard A, Patel VV, Bruneau BG, Kim JB, Kupershmidt S et al. The T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system. Development 2004; 131: 4107-16.
Kokubo H, Tomita-Miyagawa S, Hamada Y, Saga Y. Hesr1 and Hesr2 regulate atrioventricular boundary formation in the developing heart through the repression of Tbx2. Development 2007; 134: 747-55.
Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homebox geneNkx2-5. Genes Dev 1995; 9: 1654-66.
Harris BS, Spruill L, Edmonson AM, Rackley MS, Benson DW, O’Brien TX et al. Differentiation of cardiac Purkinje fibers requires precise spatiotemporal regulation of Nkx2-5 expression. Dev Dyn 2006; 235: 38-49.
Jay PY, Harris BS, Maguire CT, Buerger A, Wakimoto H, Tanaka M et al. Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. J Clin Invest 2004; 113: 1130-7.
Gourdie RG, Wei Y, Kim D, Klatt SC, Mikawa T. Endothelin induced conversion of embryonic heart muscle cells into impulse-conducting Purkinje fibers. Proc Natl Acad Sci USA 1998; 95: 6815-8.
Takebayashi-Suzuki K, Yanagisawa M, Gourdie RG, Kanzawa N, Mikawa T. In vivo induction of cardiac Purkinje fiber differentiation by coexpression of preproendothelin-1and endothelin converting enzyme-1. Development 2000; 127: 3523-32.