2010, Número 3
<< Anterior Siguiente >>
Rev Educ Bioquimica 2010; 29 (3)
Mecanismos de regulación traduccional mediados por el factor de inicio 4E: Las dos caras de la moneda
Martínez SAV. Dinkova TD
Idioma: Español
Referencias bibliográficas: 22
Paginas: 82-91
Archivo PDF: 351.10 Kb.
RESUMEN
Casi todos los mRNA eucariontes poseen una estructura llamada CAP en su extremo 5’ (m
7GpppN, donde N es cualquier nucleótido) reconocida por el factor de inicio de la traducción eIF4E y proteínas similares para facilitar su exportación nuclear, determinar su localización citoplasmática y permitir su traducción eficiente. La interacción entre el CAP y eIF4E, así como la unión de otras proteínas determina en gran medida el destino del mRNA recién transcrito: traducción, almacenaje, o degradación, dependiendo de los estímulos externos celulares y las señales de desarrollo. La presencia de diferentes miembros de la familia eIF4E, su especificidad por diferentes tipos de estructura CAP, expresión selectiva y afinidades por diferentes proteínas constituye un mecanismo fino adicional para la regulación de la expresión genética mediada por este factor.
REFERENCIAS (EN ESTE ARTÍCULO)
Browning KS (2004) Plant translation initiation factors: it is not easy to be green. Biochemical Society Transactions 32:589-591.
Fischer PM (2009) Cap in hand: targeting eIF4E. Cell Cycle 8:2535-2541.
Kaye NM, Emmett KJ, Merrick WC and Jankowsky E (2009) Intrinsic RNA binding by the eukaryotic initiation factor 4F depends on a minimal RNA length but not on the m7G cap. J Biol Chem 284:17742-17750.
Groppo R. and Richter JD (2009) Translational control from head to tail. Curr Opin Cell Biol 21:444-451.
Pain VM (1996) Initiation of protein synthesis in eukaryotic cells. Eur J Biochem 236:747-771.
Rhoads RE (2009) eIF4E: new family members, new binding partners, new roles. J Biol Chem 284:16711-16715.
Pestova TV, Lorsch JR and Hellen CU (2007) En Translational Control in Biology and Medicine. Editor: Mathews MB, Sonenberg N. and Hershey JWB, CSHL Press, Cold Spring Harbor, NY, pp. 87-128.
Pisarev AV, Hellen CU and Pestova TV (2007) Recycling of eukaryotic posttermination ribosomal complexes. Cell 131:286-299.
Mayberry LK, Allen ML, Dennis MD and Browning KS (2009) Evidence for variation in the optimal translation initiation complex: plant eIF4B, eIF4F, and eIF(iso)4F differentially promote translation of mRNAs. Plant Physiol 150:1844-1854.
Niedzwiecka A, Marcotrigiano J, Stepinski J, Jankowska-Anyszka M, Wyslouch-Cieszynska A, Dadlez M, Gingras AC, Mak P, Darzynkiewicz E, Sonenberg N (2002) Biophysical studies of eIF4E cap-binding protein: recognition of mRNA 5’ cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins. J Mol Biol 319:615-635.
Monzingo AF, Dhaliwal S, Dutt-Chaudhuri A, Lyon A, Sadow JH, Hoffman DW, Robertus JD and Browning KS (2007) The structure of eukaryotic translation initiation factor-4E from wheat reveals a novel disulfide bond. Plant Physiol 143:1504-1518.
Joshi B, Lee K, Maeder DL and Jagus R (2005) Phylogenetic analysis of eIF4E-family members. BMC Evol Biol 5:48.
Hernandez G, Altmann M, Sierra JM, Urlaub H, Diez del Corral R, Schwartz P and Rivera-Pomar R (2005) Functional analysis of seven genes encoding eight translation initiation factor 4E (eIF4E) isoforms in Drosophila. Mech Dev 122:529-543.
Keiper BD, Lamphear BJ, Deshpande AM, Jankowska-Anyszka M, Aamodt EJ, Blumenthal T and Rhoads RE (2000) Functional characterization of five eIF4E isoforms in Caenorhabditis elegans. J Biol Chem 275:10590-10596.
Robalino J, Joshi B, Fahrenkrug SC and Jagus R (2004) Two zebrafish eIF4E family members are differentially expressed and functionally divergent. J Biol Chem 279:10532-10541.
Rodriguez CM, Freire MA, Camilleri C and Robaglia C (1998) The Arabidopsis thaliana cDNAs coding for eIF4E and eIF(iso)4E are not functionally equivalent for yeast complementation and are differentially expressed during plant development. Plant J 13:465-473.
Ruud KA, Kuhlow C, Goss DJ and Browning KS (1998) Identification and characterization of a novel cap-binding protein from Arabidopsis thaliana. J Biol Chem 273:10325-10330.
Ptushkina M, Malys N and McCarthy JE (2004) eIF4E isoform 2 in Schizosaccharomyces pombe is a novel stress-response factor. EMBO Rep 5:311-316.
Dinkova TD, Keiper BD, Korneeva NL, Aamodt EJ and Rhoads RE (2005) Translation of a small subset of Caenorhabditis elegans mRNAs is dependent on a specific eukaryotic translation initiation factor 4E isoform. Mol Cell Biol 25:100-113.
Cho PF, Poulin F, Cho-Park YA, Cho-Park IB, Chicoine JD, Lasko P and Sonenberg N (2005) A new paradigm for translational control: inhibition via 5’-3’ mRNA tethering by Bicoid and the eIF4E cognate 4EHP. Cell 121:411-423.
Dinkova TD, Aguilar R and Sanchez de Jimenez E (2003) En Nicolas G, Bradford KJ, Come D and Pritchard HW (eds.), The Biology of Seeds: Recent Research Advances. CAB International pp 181-189.
Duprat A, Caranta C, Revers F, Menand B, Browning KS and Robaglia C (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 32:927-934.