2012, Número 1
Siguiente >>
TIP Rev Esp Cienc Quim Biol 2012; 15 (1)
Presencia del Hg total en una relación suelo-planta-atmósfera al Sur de la Sierra Gorda de Querétaro, México
Hernández-Silva G, García-Martínez R, Solís-Valdez S, Martínez-Trinidad S, Mercado-Sotelo I, Ramírez-Islas M, Scharek P, Solorio-Munguía G
Idioma: Español
Referencias bibliográficas: 43
Paginas: 5-15
Archivo PDF: 265.04 Kb.
RESUMEN
La región minera de San Joaquín, Querétaro, México, tiene un historial de más de dos mil años de explotación. En ella se identificaron cuatro áreas con contenidos de Hg en suelos por arriba de lo permitido por la NOM y la WHO: Azogues y Ranas- San Joaquín (›300 mg kg
-1) y Calabacillas-Santa Rita y La Lana (30.1-300 mg kg
-1). Los suelos de estas áreas proporcionan al maíz (
Zea mays), cantidades significativas de Hg total a través de mecanismos de traslocación (0.2-8.7 mg kg
-1 en raíces y 0.2- 8.2 mg kg
-1 en tallo y hoja); en grano, las cantidades oscilan entre 0.04-0.87 mg kg-1 (0.5 mg kg
-1 es el máximo permitido). En la fracción insoluble del agua de lluvia, la concentración promedio fue de 67.47 µg L
-1; en la fracción soluble se tuvo un promedio de 36.49 µg L
-1. El promedio diario de vapor de Hg fue de 67 ng m-3 durante los 38 días de lectura, con un intervalo de 40 a 100 ng m
-3, lo que demuestra una gran diferencia en la cantidad de volatilización del Hg. Los suelos, sedimentos y terreros de cinabrio, constituyen la fuente que provee de Hg al maíz a través de mecanismos de traslocación y material particulado hacia la atmósfera arrastrado por el viento y redepositado a sotavento. Las lecturas que se obtuvieron de vapor de Hg resultaron más altas de lo recomendable. Los resultados obtenidos en el sistema estudiado, denotan concentraciones por arriba del límite permisible. La población de San Joaquín está expuesta a una concentración de mercurio que es variable y por arriba de lo permitido, lo que puede tener serias consecuencias en la salud humana y el posible impacto en el medio ambiente.
REFERENCIAS (EN ESTE ARTÍCULO)
Parsons, M. & Percival, J. In: Mercury sources, measurements, cycles and effects (ed. Parsons, M.B. & Percival, J.B.) 1-20 (Association of Canada; Short Course Series 34, 2005).
García-Sánchez, A., Murciego, A., Álvarez-Ayuso, E., Santa Regina, I. & Rodríguez-González, M.A. Mercury in soils and plants in an abandoned cinnabar mining area (SW Spain). Journal of Hazardous Materials 168, 1319-1324 (2009).
Herrera-Muñoz, A. Minería del cinabrio en la región de El Doctor, Qro. (Tesis de licenciatura, ENAH, 1994). 97 págs.
Consejo de Recursos Mineros. Geological-Mining Monograph of the State of the Queretaro (SEMIP, 1992). 119 págs.
Kim, Ch.S. In Mercury: Sources, Measurements, Cycles and Effects. (ed. Parsons, M.B & Percival, J.B.) 95-122 (Mineral. Assoc. Canada, Short Course 34, 2005).
Rasmussen, P., et al. In Mercury: Sources, Measurements, Cycles, and Effects (eds. Parsons M.B. &. Percival J.B) 123-138 (Mineral Assoc. Can. Short Course Vol. 34, 2005)
Gray, J.E., Hines, M.E., Higueras, P.L., Adatto, I. & Lasorsa, B.K. Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almadén mining district, Spain. Environmental Science & Technology 38, 4285-4292 (2004).
Horvat, M., et al. Mercury distribution in water, sediment and soil in the Idrijca and Soca river systems. Geochemistry: Exploration, Environment, Analysis 2, 287-296 (2002).
Higueras, P., Oyarzun, R., Biester, H., Lillo, J. & Lorenzo, S.A. First insight into mercury distribution and speciation in soils from the Almadén mining district, Spain. Journal of Geochemical Exploration 80, 95-104 (2003).
Hernández-Silva, G. et al. Monitoreo de contaminantes de las sub cuencas de los ríos Turbio, Guanajuato y San Juan de Otates, Edo. de México y su impacto en el río Lerma, México (Boletín 112 del Instituto de Geología, UNAM, 2005).
Krabbenhoft, D.P., Branfireun, B.A. & Heyes, A. In Mercury: Sources, Measurements, Cycles and Effects (ed. Pearsons, M.B & Percival, J.B.) 139-156 (Mineral. Assoc. Canada, Short Course 34, 2005).
Mason, R.P., Fitzgerald, W.F. & Morel, F.M.M. The biogeochemical cycling of elemental mercury: Anthropogenic cycling of elemental mercury: Anthropogenic influences. Geochem. Cosmochim. Acta 58, 3191-3198 (1994).
Hintelmann, H., et al. Reactivity and mobility of new and old mercury deposition in a Boreal forest ecosystem during the first year of the METAALUCUS study. Environ. Sci. Tech. 36, 5034-5040 (2002).
Gabriel, M.C. & Williamson, D.G. Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environmental Geochemistry and Health 26, 421-434 (2004).
Rodríguez Martín, J.P, Carbonel Martín, G. & Grau Corbí, J.M. Sistemas de Información Geográfica como herramienta para evaluar la aportación antrópica de mercurio en suelos. Revista Geográfica de América Central No. Especial, 151-168 (2010).
Wasserman, J.C., Hacon, S. & Wasserman, M.A. Biogeochemistry of mercury in the Amazonian environment. Ambio: A Journal of the Human Environment 32(5), 336-342 (2003).
Pyatt, F.B., Pyatt, A.J., Walter, C., Sheen, T. & Grattan, J.P. The heavy metal ok skeletons from an ancient metalliferous polluted area in southern Jordan with particular reference to bioaccumulation and human health. Ecotoxicology and Environmental Safety 60, 295-300 (2005).
Martínez-Reyes, J., Mitre, S., Hernández, S. & Hinojo, N. In Memorias, Mercurio: El Hombre y la Naturaleza al Sur de la Sierra Gorda de Querétaro (ed. Hernández, S.G.) 5-15 (Centro de Geociencias, UNAM, 2009).
Vassallo, L.F. New structural and metallogenetic insights for the central part of Mexico from field and Landsat Thematic Mapper data (Geological Society of America Abstracts with Programs 333(6), A290, Boston, Massachusetts, USA, 2001).
Bartha, A. & Varga-Berna, Z. FOREGS Geochemical Baseline Programme: Mercury determination from solid samples. (Geological Institute of Hungary, Budapest, 2002).
Bertalan, E. & Bartha, A. Analytical method of the research of Carlin type gold mineralization in Hungary. Magyar Kemial Folyoira Kemial Kozlemenyek 106(5-6), 220-225 (2000).
Díaz-Viera, M.A. Geoestadística aplicada (Instituto de Geofísica y Astronomía, CITMA, Cuba, 2002).
Goovaerts, P. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biol. Fertil. Soils 27, 315-334 (1998).
R Development Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.Rproject.org (2010).
NOM-127-SSA1, 1994, Modificación a la Norma Oficial Mexicana. Salud ambiental. Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. Diario Oficial de la Federación. México, D.F.
Bargagli, R., Barghigiani, C. & Masetri, B.E. Mercury in vegetation of the Mount Amiata area (Italy). Chemosphere 15, 1035-1042 (1986).
Rea, A.W., Lindberg, S.E., Scherbatskoy, T. & Keeler, G.J. Mercury accumulation in foliage over time in two northern mixedhardwood forests. Water, Air, and Soil Pollution 133, 49-67 (2002).
Temmerman, L., Waegeneers, N., Claeys, N. & Roekens, E. Comparison of concentrations of mercury in ambient air to its accumulation by leaf vegetables: An important step in terrestrial food chain analysis. Environmental Pollution 157, 1337-1341 (2009).
Hanson, P.J., Lindberg, S.E., Tabberer, T.A., Owens, J.G. & Kim, K-H. Foliar exchange of mercury vapor: evidence for a compensation point. Water, Air and Soil Pollution 80, 373-382 (1995).
Patra, M. & Sharma, A. Mercury toxicity in plants. The Botanical Review 66, 379-422 (2000)
WHO-IPCS. 2004. WHO Food Additives Series: 52. Safety evaluation of certain food additives and contaminants (World Health Organization, Geneva, Switzerland 2004).
Rothenberg, S.E., Du, X., Zhu, Y-G. & Jay, A. The impact of sewage irrigation on the uptake of mercury in corn plants (Zea mays) from suburban Beijing. Environmental Pollution 149, 246-51 (2007).
Molina, J.A., Oyarzun, R., Esbrí, J.M. & Higueras, P. Mercury accumulation in soils and plants in the Almadén mining district Spain: one of the most contaminated sites on Earth. Environmental Geochemistry and Health 28, 487-498 (2006).
Qiu, G., Feng, X., Wang, S. & Shang, L. Environmental contamination of mercury from Hg-mining areas in Wuchuan northeastern Guizhou, China. Environmental Pollution 142, 549-558 (2006).
Duce, A.R., et al. Organic material in the global troposphere. Reviews of Geophysics and Space Physics 21, 921-952 (1983).
Duce, A.R. & Hoffman, G.L. Atmospheric vanadium transport to the ocean. Atmospheric Environment 10, 989-996 (1976).
Kocman, D., Vreca, P., Fajon, V. & Horvat, M. Atmospheric distribution and deposition of mercury in the Idrija Hg mine region, Slovenia. Environmental Research 111, 1-9 (2011).
Galloway, J.N. Acidification of the world: Natural and Anthropogenic. Water, Air and Soil Pollution 130, 17-24 (2001).
Schroeder, W. & Munthe, J. Atmospheric Mercury-an overview. Atmospheric Environmental 32, 809-822 (1998).
Grandjean, P. Mercury (Institute of Public Health, University of Southern Denmark, Odense, Denmark; Department of Environmental Health, Harvard School of Public Health, Boston, MA, US, 2008).
Boening, D.W. Ecological effects, transport, and fate of mercury; a general review. Chemosphere 40, 1335-1351 (2000).
Higueras, P., et al. The Almadén district, Spain: anatomy of one of the world's largest Hg-contaminated sites. Science of The Total Environment 356, 112-124 (2006).
Wang, S., Feng, X., Qiu, G., Fu, X. & Wei, Z. Characteristics of mercury exchange flux between soil and air in the heavily airpolluted area, eastern Guizhou, China. Atmospheric Environment 41, 5584-5594 (2007).