2011, Número 4
<< Anterior Siguiente >>
Rev Mex Med Repro 2011; 3.4 (4)
El papel de la proteómica en la definición del secretoma embrionario humano
Katz JMG, McReynolds S, Gardner DK, Schoolcraft WB
Idioma: Español
Referencias bibliográficas: 45
Paginas: 150-159
Archivo PDF: 159.47 Kb.
RESUMEN
La evaluación no invasiva de gametos y embriones se considera un aspecto importante en la tecnología de reproducción asistida. Actualmente, la selección de embriones para transferencia se basa en índices morfológicos. Aunque exitoso, el campo de la tecnología de reproducción asistida se beneficiaría de un método cuantitativo no invasivo para la determinación de la viabilidad. Las técnicas ómicas, incluidas la transcriptómica, proteómica y metabolómica, han empezado a proporcionar evidencia de que los gametos y embriones viables poseen perfiles moleculares únicos con biomarcadores potenciales que pueden utilizarse para la selección del desarrollo, de la viabilidad, o de ambas. A diferencia del genoma humano que es relativamente fijo y estable en todo el cuerpo humano, el proteoma humano, estimado en más de un millón de proteínas, es más complejo, diverso y dinámico. Las proteínas en sí mismas contribuyen a la homeostasia fisiológica de cualquier célula o tejido. De interés particular en la tecnología de reproducción asistida es el secretoma, las proteínas producidas dentro del embrión y secretadas en el ambiente circundante. La definición del secretoma embrionario humano tiene el potencial de expandir nuestro conocimiento de los procesos celulares embrionarios, incluido el complejo diálogo entre el embrión en desarrollo y su ambiente materno, y también puede ayudar en la identificación de los embriones con mayor potencial de implantación. Los avances en las técnicas proteómicas han permitido la caracterización no invasiva del secretoma embrionario humano con la investigación en curso enfocada en la correlación con el resultado. Desde una perspectiva clínica, la selección de embriones basada en la evaluación morfológica y el análisis no invasivo del secretoma embrionario humano puede aumentar el éxito de la FIV y resultar en la transferencia rutinaria de embriones individuales.
REFERENCIAS (EN ESTE ARTÍCULO)
Dominguez DC, Lopes R, Torres ML. Proteomics: clinical applications. Clin Lab Sci 2007;20:245-248.
Hathout Y. Approaches to the study of the cell secretome. Expert Rev Proteomics 2007;4:239-248.
Hu S, Loo JA, Wong DT. Human body fluid proteome analysis. Proteomics 2006;6:6326-6353.
Kulasingam V, Diamandis EP. Proteomics analysis of conditioned media from three breast cell lines: a mine for biomarkers and therapeutic targets. Mol Cell Proteomics 2007;6:1997-2011.
Ebner T, Moser M, Sommergruber M, Tews G. Selection based on morphological assessment of oocytes and embryos at different stages of preimplantation development: a review. Hum Reprod Update 2003;9:251-262.
Sakkas D, Gardner DK. Noninvasive methods to assess embryo quality. Curr Opin Obstet Gynecol 2005;17:283-288.
Stern JE, Cedars MI, Jain T, Klein NA, et al. Assisted reproductive technology practice patterns and the impact of embryo transfer guidelines in the United States. Fertil Steril 2007;88:275-282.
Pinborg A. IVF/ICSI twin pregnancies: risks and prevention. Hum Reprod Update 2005;11:575-593.
Williamson AJ, Smith DL, Blinco D, Unwin RD, et al. Quantitative proteomics analysis demonstrates post-transcriptional regulation of embryonic stem cell differentiation to hematopoiesis. Mol Cell Proteomics 2008;7:459-472.
Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999;19:1720-1730.
Latham KE, Garrels JI, Chang C, Solter D. Analysis of embryonic mouse development: construction of a highresolution, two-dimensional gel protein database. Appl Theor Electrophor 1992;2:163-170.
Shi CZ, Collins HW, Garside WT, Buettger CW, et al. Protein databases for compacted eight-cell and blastocyst-stage mouse embryos. Mol Reprod Dev 1994;37:34-47.
Navarrete Santos A, Tonack S, Kirstein M, Kietz S, Fischer B. Two insulin-responsive glucose transporter isoforms and the insulin receptor are developmentally expressed in rabbit preimplantation embryos. Reproduction 2004;128:503-516.
Wang Y, Puscheck EE, Lewis JJ, Trostinskaia AB, et al. Increases in phosphorylation of SAPK/JNK and p38MAPK correlate negatively with mouse embryo development after culture in different media. Fertil Steril 2005;1:1144-1154.
Gutstein HB, Morris JS, Annangudi SP, Sweedler JV. Microproteomics: analysis of protein diversity in small samples. Mass Spectrom Rev 2008;27:316-330.
Jansen C, Hebeda KM, Linkels M, Grefte JM, et al. Protein profiling of B-cell lymphomas using tissue biopsies: A potential tool for small samples in pathology. Cell Oncol 2008;30:27-38.
Seibert V, Wiesner A, Buschmann T, Meuer J. Surfaceenhanced laser desorption ionization time-of-flight mass spectrometry (SELDI TOF-MS) and ProteinChip technology in proteomics research. Pathol Res Pract 2004;200:83-94.
Cho WC. Contribution of oncoproteomics to cancer biomarker discovery. Mol Cancer 2007;6:25.
Liebler DC. Introduction to Proteomics: Tools for the New Biology. New Jersey: Humana Press; 2002.
Sutovsky P, Manandhar G, Laurincik J, Letko J, et al. Expression and proteasomal degradation of the major vault protein (MVP) in mammalian oocytes and zygotes. Reproduction 2005;129:269-282.
Katz-Jaffe MG, Linck DW, Schoolcraft WB, Gardner DK. A proteomic analysis of mammalian preimplantation embryonic development. Reproduction 2005;130:899-905.
Katz-Jaffe MG, Gardner DK, Schoolcraft WB. Proteomic analysis of individual human embryos to identify novel biomarkers of development and viability. Fertil Steril 2006a;85:101-107.
Hu J, Coombes KR, Morris JS, Baggerly KA. The importance of experimental design in proteomic mass spectrometry experiments: some cautionary tales. Brief Funct Genomic Proteomic 2005;3:322-331.
O’Neill C. The role of paf in embryo physiology. Hum Reprod Update 2005;11:215-228.
Gonzalez RR, Caballero-Campo P, Jasper M, Mercader A, et al. Leptin and leptin receptor are expressed in the human endometrium and endometrial leptin secretion is regulated by the human blastocyst. J Clin Endocrinol Metab 2000;85:4883-4888.
Cervero A, Horcajadas JA, Dominguez F, Pellicer A, Simon C. Leptin system in embryo development and implantation: a protein in search of a function. Reprod Biomed Online 2005;10:217-223.
Díaz-Cueto L, Stein P, Jacobs A, Schultz RM, Gerton GL. Modulation of mouse preimplantation embryo development by acrogranin (epithelin/granulin precursor). Dev Biol 2000;217:406-418.
Sakkas D, Lu C, Zulfikaroglu E, Neuber E, Taylor HS. A soluble molecule secreted by human blastocysts modulates regulation of HOXA10 expression in an epithelial endometrial cell line. Fertil Steril 2003;80:1169-1174.
Noci I, Fuzzi B, Rizzo R, Melchiorri L, et al. Embryonic soluble HLA-G as a marker of developmental potential in embryos. Hum Reprod 2005;20:138-146.
Sher G, Keskintepe L, Fisch JD, Acacio BA, et al. Soluble human leukocyte antigen G expression in phase I culture media at 46 hours after fertilization predicts pregnancy and implantation from day 3 embryo transfer. Fertil Steril 2005;83:1410-1413.
Sargent I, Swales A, Ledee N, Kozma N, et al. sHLA-G production by human IVF embryos: can it be measured reliably? J Reprod Immunol 2007;75:128-132.
Katz-Jaffe MG, Schoolcraft WB, Gardner DK. Analysis of protein expression (secretome) by human and mouse preimplantation embryos. Fertil Steril 2006;86:678-685.
Telford NA, Watson AJ, Schultz GA. Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev 1990;26:90-100.
Sandoval JA, Hoelz DJ, Woodruff HA, Powell RL, et al. Novel peptides secreted from human neuroblastoma: useful clinical tools? J Pediatr Surg 2006;41:245-251.
Delbosc S, Haloui M, Louedec L, Dupuis M, et al. Proteomic analysis permits the identification of new biomarkers of arterial wall remodeling in hypertension. Mol Med 2008;14:383-394.
Wang HM, Zhang X, Qian D, Lin HY, et al. Effect of ubiquitinproteasome pathway on mouse blastocyst implantation and expression of matrix metalloproteinases-2 and -9. Biol Reprod 2004;70:481-487.
Katz-Jaffe MG, Stevens J, Kearns WG, Gardner DK, Schoolcraft WB. Relationship between embryonic secretome and chromosomal abnormalities in human IVF. Fertil Steril 2006;86:S57.
Fragouli E, Lenzi M, Ross R, Katz-Jaffe MG, et al. Comprehensive molecular cytogenetic analysis of the human blastocyst stage. Hum Reprod 2008;23:2596-2608.
Katz-Jaffe MG, Fagouli E, Fillipovits J, Wells D, Schoolcraft WB. Relationship between the human blastocyst secretome and chromosomal constitution. Fertl Steril 2008;90:S80.
Dominguez F, Gadea B, Esteban FJ, Horcajadas JA, et al. Comparative protein-profile analysis of implanted versus non-implanted human blastocysts. Hum Reprod 2008;23:1993-2000.
Robertson SA. GM-CSF regulation of embryo development and pregnancy. Cytokine Growth Factor Rev 2007;18:287-298.
Spisak S, Tulassay Z, Molnar B, Guttman A. Protein microchips in biomedicine and biomarker discovery. Electrophoresis 2007;28:4261-4273.
Brison DR, Hollywood K, Arneson R, Goodacre R. Predicting human embryo viability: the road to non-invasive analysis of the secretome using metabolic footprinting. Reprod Biomed Online 2007;15:296-302.
Seli E, Sakkas D, Scott R, Kwok SC, et al. Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril 2007;88:1350-1357.
Scott R, Seli E, Miller K, Sakkas D, et al. Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study. Fertil Steril 2008;90:77-83.