2011, Número 3
<< Anterior Siguiente >>
Biotecnol Apl 2011; 28 (3)
Identificación de una nueva tripsina de Spodoptera frugiperda que participa en un mecanismo de defensa contra la toxina CryCa1 de Bacillus thruringiensis
Rodríguez L, Borrás O, Téllez P, Morán I, Ponce M, Fernández Y, Ayra C
Idioma: Ingles.
Referencias bibliográficas: 14
Paginas: 176-179
Archivo PDF: 304.93 Kb.
FRAGMENTO
Sin resumen
REFERENCIAS (EN ESTE ARTÍCULO)
Federici BA. Insecticidal bacteria: an overwhelming success for invertebrate pathology. J Invertebr Pathol. 2005;89: 30-8.
Clives J. Brief 41: Global Status of Commercialized Biotech/GM Crops: 2009. Ithaca (NY): ISAAA; 2009 [cited 2011 Jan 20]. ISAAA Brief No. 41. Available from: http://www.isaaa.org/resources/publications/briefs/41/default.asp.
Tabashnik BE, Cushing NL, Finson N, Johnson MW. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol. 1990;83:1671-6.
Janmaat AF, Myers J. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proc Biol Sci. 2003;270(1530):2263-70.
Tabashnik BE, Van Rensburg JB, Carrière Y. Field-evolved insect resistance to Bt crops: definition, theory, and data. J Econ Entomol. 2009;102(6):2011-25.
Lightwood DJ, Ellar DJ, Jarrett P. Role of proteolysis in determining potency of Bacillus thuringiensis Cry1Ac delta-endotoxin. Appl Environ Microbiol. 2000; 66(12):5174-81.
Bravo A, Gill SS, Soberón M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon. 2007;49(4):423-35.
Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA. 1996; 93(12):6025-30.
Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol. 2006;15(3):383-91.
Rodríguez-Cabrera L, Trujillo-Bacallao D, Borrás-Hidalgo O, Wright DJ, Ayra-Pardo C. Molecular characterization of Spodoptera frugiperda-Bacillus thuringiensis Cry1Ca toxin interaction. Toxicon. 2008; 51(4):681-92.
Fournier P. SPODOBASE [Internet]. Paris: INRA. c2003 - [cited 2010 Mar 17]. Available from: http://bioweb.ensam.inra.fr/spodobase/
Rodríguez-Cabrera L, Trujillo-Bacallao D, Borrás-Hidalgo O, Wright DJ, Ayra-Pardo C. RNAi-mediated knockdown of a Spodoptera frugiperda trypsin-like serine-protease gene reduces susceptibility to a Bacillus thuringiensis Cry1Ca1 protoxin Environ Microbiol. 2010;12(11):2894-903.
Oppert B. Protease interactions with bacillus thuringiensis insecticidal toxins. Arch Insect Biochem Physiol. 1999;42(1):1-12.
Zhu YC, Oppert B, Kramer KJ, McGaughey WH, Dowdy AK. cDNA sequence, mRNA expression and genomic DNA of trypsinogen from the indianmeal moth, Plodia interpunctella. Insect Mol Biol. 2000; 9(1):19-26.