2012, Número 1
<< Anterior Siguiente >>
Biotecnol Apl 2012; 29 (1)
Estabilización de la glucosa oxidasa con carboximetilcelulosa ramificado con ciclodextrina
Matos M, Simpson BK, Ramírez HL, Cao R, Torres-Labandeira JJ, Hernández K
Idioma: Ingles.
Referencias bibliográficas: 34
Paginas:
Archivo PDF: 230.13 Kb.
RESUMEN
La glucosa oxidasa (GOx; EC 1.1.3.4) se modificó químicamente con el polímero carboximetilcelulosa ramificado con unidades de β ciclodextrina (CMC-CD) utilizando una carbodiimida como agente acoplante. La neoglicoenzima contenía 0.78 mol de polisacáridos por mol de GOx y retuvo, después de la transformación, el 67% de su actividad inicial. Se compararon algunas características de la enzima modificada y la nativa. La enzima modificada mostró valores de Km superiores a la enzima libre. La termoestabilidad de la glucosa oxidasa modificada con el polímero CMC-CD se incrementó de 45 ºC hasta 51 ºC. A través de esta metodología, se logró una mayor estabilidad de la enzima modificada con CMC-CD, la cual mostró 2.2 veces más resistencia a la inactivación térmica a 45 ºC. Por otra parte, este derivado retuvo el 75% de su actividad inicial después de tres horas de incubación lo cual demuestra una remarcada estabilidad en presencia del surfactante aniónico duodecilsulfato de sodio y reveló una máxima actividad a valores de pH alcalinos (7.5). La glicosilación covalente de la glucosa oxidasa con el polímero CMC-CD puede ser utilizada efectivamente para el mejoramiento de la estabilidad de esta enzima.
REFERENCIAS (EN ESTE ARTÍCULO)
Iyer PV, Ananthanarayan L. Enzyme stability and stabilization—Aqueous and non-aqueous environment. Process Biochem. 2008;43(10):1019-32.
Villalonga ML, Reyes G, Villalonga R. Metal-induced stabilization of trypsin modified with alpha-oxoglutaric acid. Biotechnol Lett. 2004;26(3):209-12.
Wang C, Eufemi M, Turano C, Giartosio A. Influence of the carbohydrate moiety on the stability of glycoproteins. Biochemistry. 1996;35(23):7299-307.
Mislovicova D, Masarova J, Svitel J, Mendichi R, Soltes L, Gemeiner P, et al. Neoglycoconjugates of mannan with bovine serum albumin and their interaction with lectin concanavalin A. Bioconjug Chem. 2002;13(1):136-42.
Zoldak G, Zubrik A, Musatov A, Stupak M, Sedlak E. Irreversible thermal denaturation of glucose oxidase from Aspergillus niger is the transition to the denatured state with residual structure. J Biol Chem. 2004;279(46):47601-9.
Tsuge H, Natsuaki O, Ohashi K. Purification, properties, and molecular features of glucose oxidase from Aspergillus niger. J Biochem. 1975;78(4):835-43.
Jones MN, Manley P, Wilkinson A. The dissociation of glucose oxidase by sodium n-dodecyl sulphate. Biochem J. 1982;203(1):285-91.
Caves MS, Derham BK, Jezek J, Freedman RB. The mechanism of inactivation of glucose oxidase from Penicillium amagasakiense under ambient storage conditions. Enzyme Microb Technol. 2011;49(1):79-87.
Bankar SB, Bule MV, Singhal RS, Ananthanarayan L. Glucose oxidase--an overview. Biotechnol Adv. 2009;27(4):489-501.
Du Y, Luo XL, Xu JJ, Chen HY. A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor. Bioelectrochemistry. 2007;70(2):342-7.
Courjean O, Mano N. Recombinant glucose oxidase from Penicillium amagasakiense for efficient bioelectrochemical applications in physiological conditions. J Biotechnol. 2011;151(1):122-9.
Oztekin Y, Ramanaviciene A, Yazicigil Z, Solak AO, Ramanavicius A. Direct electron transfer from glucose oxidase immobilized on polyphenanthroline-modified glassy carbon electrode. Biosens Bioelectron. 2011;26(5):2541-6.
Gouda MD, Singh SA, Rao AG, Thakur MS, Karanth NG. Thermal inactivation of glucose oxidase. Mechanism and stabilization using additives. J Biol Chem. 2003;278(27):24324-33.
Betancor L, Lopez-Gallego F, Hidalgo A, Alonso-Morales N, Dellamora-Ortiz G, Guisan JM, et al. Preparation of a very stable immobilized biocatalyst of glucose oxidase from Aspergillus niger. J Biotechnol. 2006;121(2):284-9.
Wenz G. Cyclodextrins as building-blocks for supramolecular structures and functional units. Angew Chem Int Ed Engl. 1994;33(8):803-22.
Atwood JL, Davies JED, MacNicol DD, Vögtle F, Lehn J-M, editors. Comprehensive supramolecular chemistry. Oxford: Pergamon; 1996. p. 451-82.
Fulton DA, Fraser Stoddart J. Neoglycoconjugates based on cyclodextrins and calixarenes. Bioconjugate Chem. 2001;12(5):655-72.
Villalonga ML, Fernandez M, Fragoso A, Cao R, Villalonga R. Functional stabilization of trypsin by conjugation with beta-cyclodextrin-modified carboxymethylcellulose. Prep Biochem Biotechnol. 2003;33(1):53-66.
Darias R, Herrera I, Fragoso A, Cao R, Villalonga R. Supramolecular interactions mediated thermal stabilization for α-amylase modified with a β-cyclodextrin-carboxymethylcellulose polymer. Biotechnol Lett. 2002;24(20):1665-8.
Ramirez HL. Cyclodextrin-grafted polysaccharides as carrier systems for naproxen [dissertation]. Havana City: Havana University; 2008.
Valdivia A, Pérez Y, Cao R, Baños M, García A, Villalonga R. Bienzymatic supramolecular complex of catalase and superoxide dismutase: Stability and anti-Inflammatory properties. Macromol Biosci. 2007;7(1):70-5.
Fernández M, Villalonga ML, Fragoso A, Cao R, Baños M, Villalonga R. -Chymotrypsin stabilization by chemical conjugation with O-carboxymethyl-poly-β-cyclodextrin. Process Biochem. 2004;39(5):535-9.
Villalonga R, Tachibana S, Cao R, Matos M, Asano Y. Glycosidation of L-phenylalanine dehydrogenase with O-carboxymethyl-poly-β-cyclodextrin. Enzyme Microb Technol. 2007;40(3): 471-5.
Betancor L, Fuentes M, Dellamora-Ortiz G, López-Gallego F, Hidalgo A, Alonso-Morales N, et al. Dextran aldehyde coating of glucose oxidase immobilized on magnetic nanoparticles prevents its inactivation by gas bubbles. J Mol Catal B Enzym. 2005;32(3):97-101.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75.
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350-6.
Bruneel D, Schacht E. End group modification of pullulan. Polymer. 1995;36:169-72.
Ahmad A, Akhtar MS, Bhakuni V. Monovalent cation-induced conformational change in glucose oxidase leading to stabilization of the enzyme. Biochemistry. 2001;40(7):1945-55.
Chaplin MF. The preparation and kinetics of immobilized enzymes [Internet]. In: Chaplin M, Becke C, editors. Enzyme Tecnhology. Cambridge: Cambridge University Press; 1990 [cited 2011 Aug 27]. p. 80-89. Available from: http://www.lsbu.ac.uk/biology/enztech.
Gómez L, Ramírez HL, Villalonga R. Chemical modification of α-amylase by sodium alginate. Acta Biotechnol 2001;21(3):265-73.
Rodriguez-Nogales JM. Kinetic behaviour and stability of glucose oxidase entrapped in liposomes. J Chem Technol Biotechnol. 2004;79(1):72-8.
Rauf S, Ihsan A, Akhtar K, Ghauri MA, Rahman M, Anwar MA, et al. Glucose oxidase immobilization on a novel cellulose acetate-polymethylmethacrylate membrane. J Biotechnol. 2006;121(3):351-60.
Fernandez-Lafuente R, Rodríguez V, Mateo C, Penzol G, Hernandez-Justiz O, Irazoqui G, et al. Stabilization of multimeric enzymes via immobilization and post-immobilization techniques. J Mol Catal B Enzymatic. 1999;7:181-90.
Gulla KC, Gouda MD, Thakur MS, Karanth NG. Enhancement of stability of immobilized glucose oxidase by modification of free thiols generated by reducing disulfide bonds and using additives. Biosens Bioelectron. 2004;19(6):621-5.