2011, Número 1
<< Anterior Siguiente >>
Rev Hematol Mex 2011; 12 (1)
Factor Steel: lecciones de supervivencia celular
Cáceres-Cortés JR
Idioma: Español
Referencias bibliográficas: 48
Paginas: 32-38
Archivo PDF: 106.90 Kb.
RESUMEN
Los ratones portadores de mutaciones en cualquiera de los loci
dominant white spotting (W) y
Steel (Sl), tienen defectos serios en el desarrollo de tres diferentes linajes celulares con actividad migratoria: melanocitos, gametos y células hematopoyéticas. El análisis genético ha revelado que el locus Sl codifica para el factor Steel, que es el ligando del receptor de tipo tirosina cinasa c-Kit que es producto del locus W. El factor Steel juega un papel decisivo en la formación de células hematopoyéticas. Recientemente se pudo establecer que regula el autorrenuevo, la diferenciación y muerte celular durante la generación de células hematopoyéticas, actúa como un factor de supervivencia. Entender cómo las células primitivas hematopoyéticas sufren una restricción progresiva en su potencial de diferenciación y adquieren características de células maduras bajo el efecto del factor Steel, representa un reto importante en biología celular. El patrón en la expresión genética en una célula está establecido por factores de transcripción que regulan procesos antagónicos como la supervivencia y la muerte celular. Aquí se explica que el efecto de supervivencia del factor Steel está modulado por el factor de transcripción de tipo básico hélice-asa-hélice SCL. Las propiedades mostradas por el factor Steel indican que juega un papel decisivo en la potenciación de la proliferación y supervivencia celular durante el desarrollo de los progenitores hematopoyéticos y no hematopoyéticos.
REFERENCIAS (EN ESTE ARTÍCULO)
Russell, E.S. Hereditary anemias of the mouse: a review for geneticists. Advances in Genetics 1979;20:357-359.
Chabot, B. Stephenson, D.A., Chapman, V.M., Besmer, P. Bernstein, A. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 1988;335:88-89.
Zsebo K.M., Williams, D.A., Geissler, E.N., Broudy, V.C., Martin, F.H., Atkins, H.L., Hsu, R.Y., Birkett, N.C., Okino, K.H., Murdock, D.C., and et al. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 1990;63:213-224.
Anderson, D.M., Lyman, S.D., Baird, A., Wignall, J.M., Eisenman, J., Rauch, C., March,, C.J., Boswell, H.S., Gimpel, S.D., Cosman, D., and et al. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell 1990; 63:235-243.
Huang, E., Nocka, K., Beier, D.R., Chu, T.Y., Buck, J., Lahm, H.W., Wellner, D., Leder, P., Besmer, P. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 1990;63:225-233.
Copeland, N.G. Gilbert, D.J., Cho, B.C., Donovan, P.J., Jenkins, N.A., Cosman, D., Anderson, D., Lyman, S.D., Williams, D.E. Mast cell growth factor maps near the steel locus on mouse chromosome 10 and is deleted in a number of steel alleles. Cell 1990;63:175-183.
Cáceres-Cortés, J., Rajotte, D., Dumouchel, J., Haddad, P., Hoang, T. Product of the steel locus suppresses apoptosis in hemopoietic cells Comparison with pathways activated by granulocyte macrophage colony-stimulating factor. J Biol Chem 1994;269:12084-12091.
Mimeault M, Batra SK. New advances on critical implications of tumor- and metastasis-initiating cells in cancer progression, treatment resistance and disease recurrence. Histol Histopathol. 2010;25:1057-73.
Loose M, Swiers G, Patient R. Transcriptional networks regulating hematopoietic cell fate decisions. Curr Opin Hematol. 2007;14:307-14.
Caceres-Cortes JR, Krosl G, Tessier N, Hugo P, Hoang T. Steel factor sustains SCL expression and the survival of purified CD34+ bone marrow cells in the absence of detectable cell differentiation. Stem Cells. 2001;19:59-70.
Lécuyer E, Hoang T. SCL: from the origin of hematopoiesis to stem cells and leukemia. Exp Hematol. 2004;32:11-24.
Scl regulates the quiescence and the long-term competence of hematopoietic stem cells. Lacombe J, Herblot S, Rojas- Sutterlin S, Haman A, Barakat S, Iscove NN, Sauvageau G, Hoang T. Blood. 2010;115:792-803.
Chen, Q., Cheng, J.T., Tsai, L.H., Schneider, N., Buchanan, G., Carroll, A., Crist, W., Ozanne, B., Siciliano, M.J., Baer, R. The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix-loop-helix protein. EMBO Journal 1990;9:415-424.
Finger, L.R., Kagan, J., Christopher, G., Kurtzberg, J., Hershfield, M.S., Nowell, P.C., Croce, C.M. Involvement of the TCL5 gene on human chromosome 1 in T cell leukemia and melanoma. Proc Nat Acad Sci USA 1989;86:5039-5043.
Cheung AM, Kwong YL, Liang R, Leung AY. Stem cell model of hematopoiesis. Curr Stem Cell Res Ther. 2006;1:305-15.
Porcher, C., Swat, W., Rockwell, K., Fujiwara, Y., Alt, FW., Orkin, SH. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 1996;86:47-57.
Hwang, L.Y., Siegelman, M., Davis, L., Oppenheimer-Marks, N., Baer, R. Expresssion of the TAL1 proto-oncogene in cultured endothelial cells and blood vessels of the spleen. Oncogene 1993;8:3043-3046.
Kallianpur, AR., Jordan, J.E., Brandt, S.J. The SCL/TAL1 gene is expressed in progenitors of both the hematopoietic and vascular systems during embriogenesis. Blood 1994;83:1200-1208.
Green, A.R., Lints, T., Visvader, J., Harvey, R., Begley, C.G. SCL is coexpressed with GATA-1 in hemopoietic cells but is also expressed in developing brain. Oncogene 1992;7:653-660.
Strohmeyer, T., Peter, S., Hartmann, M., Munemitsu, S., Ackermann, R., Ullrich, A., Slamon, D. Expression of the hst-1 and c-kit protooncogenes in human testicular germ cell tumors. Cancer Res 1991;51:1811-1816.
Lassam, N., Bickford, S. Loss of c-kit expression in cultured melanoma cells. Oncogene 1992;7:51-56.
Caceres-Cortes JR, Alvarado-Moreno JA, Waga K, Rangel-Corona R, Monroy-Garcia A, Rocha-Zavaleta L, Urdiales-Ramos J, Weiss-Steider B, Haman A, Hugo P, Brousseau R, Hoang T. Implication of tyrosine kinase receptor and steel factor in cell density-dependent growth in cervical cancers and leukemias. Cancer Res. 2001;61:6281-9.
Inoue, M., Kyo, S., Fujita, M., Enomoto, T., Kondoh, G. Coexpression of the c-kit receptor and the stem cell factor in gynecological tumors. Cancer Res 1994;54:3049-3053.
Toyota, M., Hinoda, Y., Takaoka, A., Makiguchi, Y., Takahashi, T., Itoh, F., Imai, K.., Tsukamoto, T., Hida, T., Shimokata, Zsebo, K., Takahashi, T. Expression of c-kit and kit ligand in human colon carcinoma cells. Tumour Biol 1993;14:295-302.
Wolff NC, Randle DE, Egorin MJ, Minna JD, Ilaria RL Jr. Imatinib mesylate efficiently achieves therapeutic intratumor concentrations in vivo but has limited activity in a xenograft model of small cell lung cancer. Clin Cancer Res. 2004;10:3528-34.
Krystal, G.W., Hines, S.J., Organ, C.P. Autocrine growth of small cell lung cancer mediated by coexpression of c-kit and stem cell factor. Cancer Res 1996;56:370-376.
Hines, S.J., Organ, C., Kornstein, M.J., Krystal, G.W. Coexpression of the c-kit and stem cell factor genes in breast carcinomas. Cell Growth Diff 1995;6:769-79.
Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes. Tremblay M, Tremblay CS, Herblot S, Aplan PD, Hébert J, Perreault C, Hoang T. Genes Dev. 2010;24:1093-105.
Brumatti G, Salmanidis M, Ekert PG. Crossing paths: interactions between the cell death machinery and growth factor survival signals. Cell Mol Life Sci. 2010;67:1619-30.
Sposi, N.M., Zon, L.I., Care, A., Valtieri, M., Testa, U., Gabbianelli, M., Mariani, G., Bottero, L., Mather, C., Orkin, S.H., Peschle, C. Cell cycle-dependent initiation and lineagedependent abrogation of GATA-1 expression in pure differentiating hematopoietic progenitors. Proc Nat Acad Sci USA 1992;89:6353-6357.
Voso, M.T., Burn, T.C., Wulf, G., Lim, B., Leone, G., Tenen, D.G. Inhibition of hematopoiesis by competitive binding of transcription factor PU.1. Proc Nat Acad Sci USA 1994;91:7932-7936.
Till, J.E., McCulloch, E.A., Siminovitch, L. A stochastic model of stem cell proliferation, based on the growth of spleen colonyforming cells. Proc Nat Acad Sci USA 1963;51:29-36.
Nakahata, T., Gross, A.J., Ogawa, M. A stochastic model of self-renewal and commitment to differentiation of the primitive hemopoietic stem cells in culture. J Cell Physiol 1982;113:455-8.
Curry JL, Trentin JJ. Hemopoietic spleen colony studies. I. Growth and differentiation. Dev Biol. 1967;15:395-413.
Metcalf, D. Lineage commitment of hemopoietic progenitor cells in developing blast cell colonies: influence of colony-stimulating factors. Proc Nat Acad Sci USA 1991;88:1310-1314.
Borzillo, G.V., Ashmun, R.A., Sherr, C.J. Macrophage lineage switching of murine early pre-B lymphoid cells expressing transduced fms genes. Mol Cell Biol 1990;10:2703-14.
Just, U., Stocking, C., Spooncer, E., Dexter, T.M., Ostertag, W. Expression of the GM-CSF gene after retroviral transfer in hematopoietic stem cell lines induces synchronous granulocyte-macrophage differentiation. Cell 1991;64:1163-1173.
Fairbairn, L.J., Cowling, G.J., Reipert, B.M., Dexter, T.M. Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors. Cell 1993;74:823-832.
Mayani, H., Dragowska, W., Lansdorp, P.M. Lineage commitment in human hemopoiesis involves asymmetric cell division of multipotent progenitors and does not appear to be influenced by cytokines. J Cell Physiol 1993;157:579-586.
Pharr, P.N., Ogawa, M., Hofbauer, A., Longmore, G.D. Expression of an activated erythropoietin or a colony-stimulating factor 1 receptor by pluripotent progenitors enhances colony formation but does not induce differentiation. Proc Nat Acad Sci USA 1994; 91:7482-7486.
Osawa M, Hanada K, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/ negative hematopoietic stem cell. Science. 1996;273:242-5.
Takano H, Ema H, Sudo K, Nakauchi H. Asymmetric division and lineage commitment at the level of hematopoietic stem cells: inference from differentiation in daughter cell and granddaughter cell pairs. J Exp Med. 2004;199:295-302.
Wu M, Kwon HY, Rattis F, Blum J, Zhao C, Ashkenazi R, Jackson TL, Gaiano N, Oliver T, Reya T. Imaging hematopoietic precursor division in real time. Cell Stem Cell. 2007;1:541-54.
Pierce, J.H., Di Marco, E., Cox, G.W., Lombardi, D., Ruggiero, M., Varesio, L., Wang, L.M., Choudhury, G.G., Sakaguchi, A.Y., Di Fiore, P.P., Aaronson, S.A. Macrophage-colonystimulating factor (CSF-1) induces proliferation, chemotaxis, and reversible monocytic differentiation in myeloid progenitor cells transfected with the human c-fms/CSF-1 receptor cDNA. Proc Nat Acad Sci USA 1990;87:5613-7.
Palani S, Sarkar CA. Integrating extrinsic and intrinsic cues into a minimal model of lineage commitment for hematopoietic progenitors. PLoS Comput Biol. 2009;5:e1000518.
Brandt, J., Bhalla, K., Hoffman, R. Effects of interleukin-3 and c-kit ligand on the survival of various classes of human hematopoietic progenitor cells. Blood 1994 83:1507-1514.
Cáceres-Cortés JR, Santiago-Osorio E, Monroy-García A, Mora-García L, Weiss-Steider B.[Stem cell factor (SCF) supports granulocyte progenitor survival in mouse bone marrow cultures]. Rev Invest Clin Méx. 1999;51:107-16.
Yonemura, Y., Ku, H., Hirayama, F., Souza, L.M., Ogawa, M. Interleukin 3 or interleukin 1 abrogates the reconstituting ability of hematopoietic stem cells. Proc Nat Acad Sci USA 1996;93:4040-4044.