2012, Número 4
<< Anterior Siguiente >>
Rev Fac Med UNAM 2012; 55 (4)
Neuroprotección y traumatismo craneoencefálico
Estrada RF, Morales GJ, Tabla RE, Solís LB, Navarro AHA, Martínez VM, Pérez AA, González RR, Rodríguez SLE, Navarro L
Idioma: Español
Referencias bibliográficas: 45
Paginas: 16-29
Archivo PDF: 328.01 Kb.
RESUMEN
Durante un proceso de lesión cerebral, por ejemplo en un traumatismo craneoencefálico, se activan respuestas que inducen daño cerebral o muerte celular; sin embargo, también se inducen respuestas de protección que intentan mantener la integridad y funcionalidad del cerebro; esto se conoce como neuroprotección. Efectivamente, posterior a un TCE, se desencadenan mecanismos que traen como consecuencia liberación de neurotransmisores excitadores tales como el glutamato, lo que provoca una entrada masiva de Ca
2+ en las neuronas, activación de proteasas, lipasas, sintasa de óxido nítrico, endonucleasas, producción de radicales libres y potencialmente necrosis o apoptosis.
Aunque hay reportes de sustancias neuro o cerebroprotectoras desde hace más de 50 años, es al final de la década de los ochenta del siglo pasado cuando comienza a aparecer un gran número de publicaciones tratando de entender los mecanismos neuroprotectores desencadenados por un insulto al cerebro. En este trabajo revisamos brevemente el concepto, la epidemiologia y los diversos agentes que se han utilizado para disminuir el daño causado por un traumatismo craneoencefálico.
REFERENCIAS (EN ESTE ARTÍCULO)
Jain KK. Handbook of Neuroprotection: Humana Press, 2011 p 1.
Leonard AL. History of Neuroprotection and Rationale as a Therapy for Glaucoma. Am J Manag Care. 2008;14:S11-S14.
Leker RR, Shohami E. Cerebral ischemia and trauma-different etiologies yet similar mechanisms: neuroprotective opportunities Brain Research Reviews. 2002;39:55-73.
Menon K, Schwab K, Wright DW, Maas AI. Position Statement: Definition of Traumatic Brain Injury. Arch Phys Med Rehabil. 2010;91:1637-40.
Sistema Nacional de Vigilancia Epidemiológica. Aspectos clínicos y epidemiológicos del Trauma Craneoencefálico en México. Secretaría de Salud 2008;25:1-4.
Chen AY, Colantonio A. Defining neurotrauma in administrative data using the International. Classification of Diseases Tenth Revision. Emerging Themes in Epidemiology. 2011; 8:1-45.
Traumatic Brain Injury In the United States. Department of Health and Human Services Centers for Disease Control and Prevention. Emergency Department Visits, Hospitalizations and Deaths 2002-2006. Revisado en Junio 1, 2011, Disponible en: http://www.cdc.gov/TraumaticBrainInjury
Suleiman GH. Trauma Craneoencefálico Severo: Parte I. Medicrit. 2005; 2:107-48.
Ronald MR, Grant LI, Jeffrey TB, et al. Recommendations for Diagnosing a Mild Traumatic Brain Injury: A National Academy of Neuropsychology Education Paper. Archives of Clinical Neuropsychology. 2009; 24:3-10.
XiongY, Mahmood A, Chopp M. Emerging treatments for traumatic brain injury. NIH Public Access Neurotherapeutics. 2009;14:67-84.
Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic injury in adults. Lancet Neurology. 2008;7:728-41.
Nestler EJ, Hyman SE, Malenka RC. Seizures and Stroke. In: Molecular Neuropharmacology. A foundation for clinical neuroscience. McGraw-Hill, NY. 2000; p 479-503.
Beauchamp K, Haitham M, Wade RS, et al. Pharmacology of Traumatic Brain Injury: Where Is the “Golden Bullet”? Mol Med. 2008;14:731-40.
Sacchetti ML, Toni D, Fiorelli M, Argentino C, Fieschi C. The concept of combination therapy in acute ischemic stroke. Neurology 1997;49(Suppl):70-4.
Muir KW, Grosset DG. Neuroprotection for acute stroke making clinical trials work. Stroke. 1999;30:180-2.
Barnes DM. Drug may protect brains of heart attack victims. Science. 1987;235(4789):632-3.
Gagliardi RJ. Neuroprotection, Excitotoxicicity and NMDA antagonists. Arq Neuropsiquiatr. 2000;58(2-b):583-8.
Olsen RW, DeLorey TM. GABA and Glycine. In: Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th Ed., edited by G. J. Siegel et al. Published by Lippincott-Raven Publishers Philadelphia.1999.
Green AR, Hainsworth AH, Jackson DM. GABA potentiation: a logical pharmacological approach for the treatment of acute ischaemic stroke. Neuropharmacology. 2000;39:1483-94.
Hutchinson PJ, O’Connell MT, Al-Rawi PG, et al. Increases in GABA concentrations during cerebral ischaemia: a microdialysis study of extracellular amino acids. J Neurol Neurosurg Psychiatry. 2002;72:99-105.
O’Dell DM, Gibson CJ, Wilson MS, et al. Positive and negative modulation of the GABA receptor and outcome after a traumatic brain injury in rats. Brain Research. 2000;861: 325-32.
Fernández FJ, Hernández F, Argandoña L, et al. Farmacología de la neuroprotección en el ictus isquémico agudo. Rev Neurol. 2008;47:253-60.
Hardingham GE. Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem Soc Trans. 2000;937(Pt 6):1147-60.
Gaspar T, Snipes JA, Busija AR, et al. ROS-independent preconditioning in neurons via activation of mitoKATP channels by BMS-191095. J Cereb Blood Flow Metab. 2008;28: 1090-103.
Stein DG, Wright DW. Progesterone in the clinical treatment of acute traumatic brain injury. Expert Opin Investig Drugs. 2010;19(7):847-57.
Akk G, Covey D, Evers A, et al.. Kinetic and structural determinants for GABA-A Receptor potentiation by neuroactive steroids. Current Neuropharmacology. 2010;8(1):18-25.
Mathew BC, Biju RS. Neuroprotective Effects of Garlic, A Review. Libyan J Med. 2010.
Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. Current Neuropharmacology. 2009;7(1):65-74.
Shohami E, Cohen A, et al. Endocannabinoids and traumatic brain injury. Br J Pharmacol. 2011; Mar 21. doi: 10.1111/j.1476-5381.2011.01343.x. [Epub ahead of print].
Hurley SD, Olschowka JA, O’Banion MK. Cyclooxygenase inhibition as a strategy to ameliorate brain injury. J. Neurotrauma. 2002;19:1-15.
Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial Lancet. 2004;364:1321-8.
Crack PJ, Gould J, Bye N, et al. The genomic profile of the cerebral cortex after closed head injury in mice: effects of minocycline. J Neural Transm. 2009;116:1-12.
Piomelli D .The molecular logic of endocannabinoid signalling. Nat Rev Neurosci. 2003;4:873-84.
Nadler V, Mechoulam R, Sokolovsky M. Blockade of 45Ca2+influx through the N-methyl-D-aspartate receptor ion channel by the non-psychoactive cannabinoid HU-211. Brain Res 1993;622:79-85.
Pharmos Corporation. Dexanabinol did not demonstrate efficacy (2004) [online], http://www.pharmoscorp.com/news/pr/pr122004.html
Royo NC, Conte V, Saatman KE, et al. Hippocampal vulnerability following traumatic brain injury: a potential role for neurotrophin-4=5 in pyramidal cell neuroprotection. Eur J Neurosci. 2006;23:1089-102.
Kizhakke S, Evans H. Temporal and regional changes in IGF-1/IGF1R signaling in the mouse brain after Traumatic Brain Injury. J. of Neurotrauma. 2010;27:95-107.
Blaha GR, Raghupathi R, Saatman KE, McIntosh TK. Brain derived neurotrophic factor administration after traumatic brain injury in the rat does not protect against behavioral or histological deficits. Neuroscience. 2000;99(3):483-93.
Lu XC, Chen RW, Yao C, Wei H, Yang X, Liao Z, Dave JR, Tortella FC. NNZ-2566, a glypromate analog, improves functional recovery and attenuates apoptosis and inflammation in a rat model of penetrating ballistic-type brain injury. J Neurotrauma. 2009;26(1):141-54.
Temkin NR, Anderson GD, Winn HR, et al. Magnesium sulfate for neuroprotection after traumatic brain injury: A randomised controlled trial. Lancet Neurol. 2007;6:29-38.
Pemberton PL, Dinsmore J. The use of hypothermia as a method of neuroprotection during neurosurgical procedures and after traumatic brain injury: A survey of clinical practice in Great Britain and Ireland. Anaesthesia. 2003;58:363-84.
Christian E, Zada G, Sung G, Giannotta SL. A review of selective hypothermia in the management of traumatic brain injury. Neurosurg Focus. 2008 Oct;25(4):E9
Zafonte R, Friedewald WT, Lee SM, et al. The citicoline brain injury treatment (COBRIT) trial: design and methods. Journal of Neurotrauma. 2009;26:2207-16
ATLS. Programa Avanzado de Apoyo Vital en Trauma para Médicos. Colegio Americano de Cirujanos. 7ª Edición.
Martinez M, González R, Soto M, et al. Recovery after a traumatic brain injury depends on diurnal variations. Effect of cystatin C. Neuroscience Letters. 2006;400:21-4.