2012, Número 3
<< Anterior Siguiente >>
Salud Mental 2012; 35 (3)
El cultivo de precursores neuronales del epitelio olfatorio: Un modelo para estudiar la neurofisiopatología de la esquizofrenia
Solís-Chagoyán H, Domínguez-Alonso A, Calixto E, Benítez-King G
Idioma: Español
Referencias bibliográficas: 44
Paginas: 241-246
Archivo PDF: 430.19 Kb.
RESUMEN
La esquizofrenia (EZ) es un trastorno psiquiátrico que se caracteriza por la presencia de delirios, alucinaciones, pensamiento desorganizado, lenguaje desestructurado, alteraciones del comportamiento social y aplanamiento afectivo, entre otros síntomas. Los pacientes con EZ también presentan un déficit en la capacidad olfatoria desde la fase prodrómica del trastorno.
El déficit olfatorio en la EZ puede presentarse por alteraciones anatómico-estructurales del SNC o por anomalías a nivel periférico en el epitelio olfatorio. Las alteraciones principales del SNC son la disminución del volumen de los bulbos olfatorios, de estructuras de la corteza olfatoria primaria, del hipocampo y de la amígdala coronal. El epitelio olfatorio en los estadios tempranos de la EZ presenta anomalías funcionales en la diferenciación y en la respuesta biofísica de las neuronas sensoriales olfatorias, lo que sugiere que existe un desacoplamiento de la transducción olfatoria.
El cultivo celular del epitelio olfatorio ha permitido aislar células progenitoras multipotenciales que poseen la capacidad de proliferar y diferenciarse en neuronas y glía. El estudio de este modelo podría aportar evidencia sobre las causas que explicarían el déficit olfatorio en la esquizofrenia y permitiría estudiar hipótesis que intenten explicar las causas de la fisiopatología de este trastorno en el neurodesarrollo así como detectar biomarcadores genéticos, proteómicos o funcionales que permitan un diagnóstico biológico.
REFERENCIAS (EN ESTE ARTÍCULO)
American Psychiatric Association. DSM-IV. Diagnostic and Statistical Manual of Mental Disorders. Cuarta edición. Washington, DC: American Psychiatric Press; 1994.
Heinze G, Benítez-King G, Bauer J. Melatonina y depresión. Salud Mental 1990;13:39-44.
Roisen FJ, Klueber KM, Lu CL, Hatcher LM et al. Adult human olfactory stem cells. Brain Res 2001;890:11-22.
Borgmann-Winter KE, Rawson NE, Wang HY, Wang H et al. Human olfactory epithelial cells generated in vitro express diverse neuronal characteristics. Neuroscience 2009;158:642–653.
Turetsky BI, Hahn CG, Borgmann-Winter K, Moberg PJ. Scents and nonsense: Olfactory dysfunction in schizophrenia. Schizophr Bull 2009;35:1117-1131.
Sawa A, Cascella NG. Peripheral olfactory system for clinical and basic psychiatry: a promising entry point to the mystery of brain mechanism and biomarker identification in schizophrenia. Am J Psychiatry 2009;166:137–139.
Benítez-King G, Riquelme A, Ortíz-López L, Berlanga C et al. A noninvasive method to isolate the neuronal linage from the nasal epithelium from schizophrenic and bipolar diseases. J Neurosci Methods 2011; doi: 10.1016/ j.jneumeth.2011.07.009.
Brewer WJ, Wood SJ, McGorry PD, Francey SM et al. Impairment of olfactory identification ability in individuals at ultra-high risk for psychosis who later develop schizophrenia. Am J Psychiatry 2003;160:1790-1794.
Turetsky B, Cowell PE, Gur RC, Grossman RI et al. Frontal and temporal lobe brain volumes in schizophrenia. Relationship to symptoms and clinical subtype. Arch Gen Psychiatry 1995;52:1061–1070.
Turetsky BI, Moberg PJ, Yousem D, Arnold SE et al. Olfactory bulb volume is reduced in patients with schizophrenia. Am J Psychiatry 2000;157:828–830.
Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res 2001;49:1–52.
Turetsky BI, Moberg PJ, Owzar K, Johnson SA et al. Physiological impairment of olfactory stimulus processing in schizophrenia. Biol Psychiatry 2003;53:403–411.
Arnold SE, Han LY, Moberg PJ, Turetsky BI et al. Dysregulation of olfactory receptor neuron lineage in schizophrenia. Arch Gen Psychiatry 2001;58:829-835.
Turetsky BI, Hahn CG, Arnold SE, Moberg PJ. Olfactory Receptor Neuron Dysfunction in Schizophrenia. Neuropsychopharmacology 2009;34:767–774.
McGorry PD, Nelson B, Amminger P, Bechdolf A et al. Intervention in individuals with ultra-high risk for psychosis: A review and future directions. J Clin Psychiatry 2009;70:1206-1212.
Nelson B, Yung AR, Bechdolf A, McGorry PD. The phenomenological critique and self-disturbance: Implications for ultra-high risk (“prodrome”) research. Schizophr Bull 2008;34:381-392.
Takahashi T, Wood SJ, Yung AR, Phillips LJ et al. Insular cortex gray matter changes in individuals at ultra-high risk of developing psychosis. Schizophr Res 2009;111:94-102.
Wood SJ, Kennedy D, Phillips LJ, Seal ML et al. Hippocampal pathology in individuals at ultra-high risk for psychosis: a multi-modal magnetic resonance study. Neuroimage 2010;52:62-68.
Howes OD, Montgomery AJ, Asselin MC, Murray RM et al. Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry 2009;66:13-20.
Brewer WJ, Francey SM, Wood SJ, Jackson HJ et al. Memory impairments identified in people at ultra-high risk for psychosis who later develop first-episode psychosis. Am J Psychiatry 2005;162:71-78.
Morrison E, Costanzo R. Morphology of the human olfactory epithelium. J Comp Neurol 1990;297:1-13.
Leopold DA, Hummel T, Schwob JE, Hong SC et al. Anterior distribution of human olfactory mucosa. Laryngoscope 2000;110:417-421.
Mombaerts P. Seven-transmembrane proteins as odorant and chemosensory receptors. Science 1999;286:707-711.
Schild D, Restrepo D. Transduction mechanisms in vertebrate olfactory receptor cells. Physiol Rev 1998;78:429-466.
Vassar R, Ngai J, Axel R. Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 1993;74:309-318.
Belluscio L, Gold GH, Nemes A, Axel R. Mice deficient of Golf are anosmic. Neuron 1998;20:69-81.
Stephana AB, Shuma EY, Hirsha S, Cygnara KD et al. ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci USA 2009;106:11776-11781.
Cygnar KD, Zhao H. Phosphodiesterase 1C is dispensable for rapid response termination of olfactory sensory neurons. Nat Neurosci 2009;12:454-462.
Bradley J, Bonigk W, Yau KW, Frings S. Calmodulin permanently associates with rat olfactory CNG channels under native conditions. Nat Neurosci 2009;7:705-710.
Gautam SH, Otsuguro KI, Ito S, Saito T et al. T-Type Ca2+ channels mediate propagation of odor-induced Ca2+ transients in rat olfactory receptor neurons. Neuroscience 2007;144:702-713.
Shiraiwa T, Makoto, Kashiwayanagi M, Iijima T et al. Involvement of the calcium channel Beta-3 subunit in olfactory signal transduction. Biochem Biophys Res Commun 2007;355:1019-1024.
Green EK, Grozeva D, Jones I, Jones L et al. The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry 2010;15:1016-1022.
Mombaerts P, Wang F, Dulac C, Chao SK et al. Visualizing an olfactory sensory map. Cell 1996,87:675-686.
Mori K, Nagao H, Yoshihara Y. The olfactory bulb: Coding and processing of odor molecule information. Science 1999;286:711-715.
Kratskin IL, Belluzzi O. Anatomy and neurochemistry of the olfactory bulb. En: Doty RL (ed.). Handbook of olfaction and gustation. New York: Marcel Dekker USA; 2003.
Murphy GJ, Darcy DP, Isaacson JS. Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit. Nat Neurosci 2005;8:354-364.
Rupp C I. Olfactory function and schizophrenia: an update. Curr Opin Psychiatry 2010;23:97–102.
Nguyen AD, Shenton ME, Levitt JJ. Olfactory dysfunction in schizophrenia: A review of neuroanatomy and psychophysiological measurements. Harv Rev Psychiatry 2010;18:279–292.
Tajinda K, Ishizuka K, Colantuoni C, Morita M et al. Neuronal biomarkers from patients with mental illnesses: a novel method through nasal biopsy combined with laser-captured microdissection. Mol Psychiatry 2010;15:231–232.
Kempermann G, Jessberger S, Steiner B, Kronenberg G. Milestones of neuronal development in the adult hippocampus. Trends Neurosci 2004;27:447–452.
Meyer U, Feldon J, Yee BK. A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophr Bull 2009;35:959-972.
Meyer U, Feldon J. Epidemiology-driven neurodevelopmental animal models ofschizophrenia. Prog Neurobiol 2010;90:285–326.
Daniels M. The role of microtubules in the growth and stabilization of nerve fibers. Ann N Y Acad Sci 1975;253:535–544.
Da Silva JS, Dotti CG. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 2002;3:694–704.