2011, Número 3
<< Anterior Siguiente >>
Rev Cubana Invest Bioméd 2011; 30 (3)
Una introducción a la mecanobiología computacional
Landinez PN, Garzón-Alvarado DA, Narváez TCA
Idioma: Español
Referencias bibliográficas: 104
Paginas: 368-389
Archivo PDF: 577.20 Kb.
RESUMEN
La mecanobiología estudia el comportamiento de células, tejidos y órganos bajo los
efectos de la bioquímica, la biología celular y los estímulos externos, como las
cargas mecánicas. Esta involucra el desarrollo de modelos y la realización de
experimentos con el objetivo de entender los procesos complejos que se presentan
en la génesis y mantenimiento de órganos y tejidos. Mediante esta disciplina se ha
logrado aislar y analizar diversos efectos como lo son la genética, los factores
moleculares autocrinos y paracrinos, y las cargas mecánicas sobre tejidos y
órganos. En esta vía, el presente trabajo muestra los principales desarrollos y
aportes de la mecanobiología computacional en el conocimiento médico.
REFERENCIAS (EN ESTE ARTÍCULO)
Malekly H, Mousavi SM, Hashemi H. A fuzzy integrated methodology for evaluating conceptual bridge design. Expert Systems with Applications.2010;37(7):4910-20.
Saven JG. Computational protein design: Advances in the design and redesign of biomolecular nanostructures, Colloid & Interface Science. 2010;15(1-2):13-7.
Komatitsch D, Erlebacher G, Göddeke D, Michéa D. High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster. Journal of Computational Physics. 2010;229(20):7692-7714.
Krasnopolsky VM, Fox-Rabinovitz MS. Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction. Neural Networks. 2006;19(2):122-34.
Strawn RC, Biswas R. Numerical simulations of helicopter aerodynamics and acoustics. Journal of Computational and Applied Mathematics. 1996;66(1-2):471-83.
Valentini G, Tagliaferri R, Masulli F. Computational intelligence and machine learning in bioinformatics. Artificial Intelligence in Medicine. 2003;45(2-3):91-6.
Boyle C, Kim IY. Comparison of different hip prosthesis shapes considering micro-level bone remodeling and stress-shielding criteria using three-dimensional design space topology optimization. Journal of Biomechanics. In Press 2011.
Hanley NA. Commonalities in the endocrinology of stem cell biology and organ regeneration. Molecular and Cellular Endocrinology 2008;288(1-2):1-5.
Cortesini R. Stem cells, tissue engineering and organogenesis in transplantation. Transplant Immunology. 2005;15(2):81-9.
Hollister SJ, Lin CY. Computational design of tissue engineering scaffolds. Computer Methods in Applied Mechanics and Engineering. 2007;196(31-32):2991-8.
Fung YC. Biomechanics: Mechanical properties of living tissues. Springer Verlag; 1990.
Sutherland CJ, Bresina SJ, Gayou DE. Use of general purpose mechanical computer assisted engineering software in orthopaedic surgical planning: advantages and limitations. Computerized Medical Imaging and Graphics. 1994;18(6):435-42.
Yaszemski MJ, Yasko A.W. Musculoskeletal Tissue Engineering for Orthopedic Surgical Applications. Frontiers in Tissue Engineering;1998. p. 197-212.
Prendergast PJ. Finite element models in tissue mechanics and orthopaedic implant design. Clinical Biomechanics. 1997;12(6):343-66.
Webster TJ. Nanophase ceramics: The future orthopedic and dental implant material. Advances in Chemical Engineerins. 2001;27:125-66.
Quaas S, Rudolph H, Luthardt RG. Direct mechanical data acquisition of dental impressions for the manufacturing of CAD/CAM restorations. Journal of Dentistry. 2007;35(12):903-8.
Ateshian GA, Friedman MH. Integrative biomechanics: A paradigm for clinical applications of fundamental mechanics. Journal of Biomechanics. 2009;42(10):1444-51.
Woo SL-Y, Thomas M, Saw SSC. Contribution of biomechanics, orthopaedics and rehabilitation: The past, present and future. The Surgeon. 2004;2(3):125-36.
Miles AW, Gheduzzi S. Basic biomechanics and biomaterials. Surgery (Oxford). 2009;27(2):90-5.
Carter DR, Beaupr´e GS. Skeletal Function and Form - Mechanobiology of skeletal Development, Aging, and Regeneration. Cambridge University Press; 2001.
Weinans H, Huiskes R, Grootenboer HJ. The behavior of adaptive boneremodeling simulation models. Journal of Biomechanics. 1992;25(12):1425-41.
Huiskes R. The law of adaptive bone remodeling: a case for crying newton?London, Singapore River Edge;1995.
23.Van der Meulen MCH, Huiskes R. Why mecanobiology? Journal of Biomechanics. 2002;35(4).
Debus AG. El hombre y la naturaleza en el renacimiento. México. FCE-CONACYT. 1985;(384).
Varadarajan VS. Euler Through Time: A new look at old themes.AMS;1983.
Brouwers JEM, van Donkelaar C, Sengers BG, Huiskes R. Can the growth factors PTHrP, Ihh and VEGF, together regulate the development of a long bone? Journal of Biomechanics. 2006;39:277482.
Lengyel I, Epstein IR. Modeling of Turing structures in the chloriteiodidemalonic acid-starch reaction system. Science, 1991;251:6502.
Edwards SL, Church JS, Werkmeister JA, Ramshaw JAM. Tubular micro-scale multiwalled carbon nanotube-based scaffolds for tissue engineering. Biomaterials. 2009;30(9):1725-31.
Snyder MF, Rideout VC, Hillestad RJ. Computer modeling of the human systemic arterial tree. Journal of Biomechanics. 1968;1(1):341-53.
Fox MD, Reinbolt JA, Õunpuu S, Delp S. Mechanisms of improved knee flexion after rectus femoris transfer surgery. Journal of Biomechanics 2009;42(5):614-619.
Liu XS, Bevill G, Keaveny TM, Sajda P, Guo XE. Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods. Journal of Biomechanics. 2009;42(3):249-56.
Eswaran SK, Bevill G, Nagarathnam P, Allen MR, Burr D, Keaveny T. Effects of suppression of bone turnover on cortical and trabecular load sharing in the canine vertebral body. Journal of Biomechanics. 2009;42(4):517-23.
Huthmann S, Staszyk C, Jacob HG, Rohn K, Gasse H. Biomechanical evaluation of the equine masticatory action: Calculation of the masticatory forces occurring on the cheek tooth battery. Journal of Biomechanics. 2009;42(1):67-70.
Carter DR, Wong M. The role of mechanical loading histories in the development of diarthrodial joints. J. Orthop Res. 1988;6:80416.
Chen D, Norris D, Ventikos Y. The active and passive ciliary motion in the embryo node: A computational fluid dynamics model. Journal of Biomechanics. 2009;42(3):210-6.
Huiskes R, Chao EYS. A survey of finite element analysis in orthopedic biomechanics: The first decade. Journal of Biomechanics.1983;16(6):385-409.
Abdul-Kadir M, Hansen U, Klabunde R, Lucas D, Amis A. Finite element modelling of primary hip stem stability: The effect of interference fit. Journal of Biomechanics. 2008;41(3):587-94.
Sfantos GK, Aliabadi MH. Total hip arthroplasty wear simulation using the boundary element method. Journal of Biomechanics. 2007;40(2):378-89.
Cowin SC, Van Buskirk WC. Internal bone remodeling induced by a medullary pin. Journal of Biomechanics. 1978;11(5):269-75.
Cowin S. Bone Mechanics Handbook. CRC press LLC; 2001.
Weinans H. Huiskes R, Grootenboer HJ. The behavior of adaptive boneremodeling simulation models. Journal of Biomechanics.1992;25(12):1425-41.
Jacobs CR, Simo JC, Beaupre GS, Carter DR. Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. Journal of Biomechanics.1997;30(6):603-13.
Doblaré M, Garcýìa. Anisotropic bone remodelling model based on a continuum damage-repair theory. Journal of Biomechanics. 2002;35(1):1-17.
Garzón-Alvarado DA. Análisis del Proceso de Regeneración Ósea por el método de los elementos finitos [tesis de Maestría]. Universidad Nacional de Colombia; 2003.
Garzón-Alvarado DA. Roa M, Ramírez A. Predicción del proceso de remodelación ósea para diferentes implantes de cadera utilizando optimización topológica. Rev Cubana Ortop Traumatol. 2009;22(2).
van der Meulen MCH, Huiskes R. Why Mechanobiology? Journal of Biomechanics. 2002;35(4):401-14.
47.Huiskes R, Chao EYS. «A survey of finite element analysis in orthopedic biomechanics: The first decade. Journal of Biomechanics. 1983;16(6):385-409.
Prendergast PJ. Finite element models in tissue mechanics and orthopaedic implant design. Clinical Biomechanics. 1997;12(6):34366.
Kelly J. The third culture. Science. 1998;279.
Martin I, Miota S, Barberoa A, Jakoba M, Wendta D. Osteochondral tissue engineering. Journal of Biomechanics. 2007;40(4).
Hsieh AH, Twomey JD. Cellular mechanobiology of the intervertebral disc: New directions and approaches. Journal of Biomechanics. 2010;43(1):137-45.
Knothe ML, Dolejs S, McBride SH, Miller RM, Knothe UR. Multiscale mechanobiology of de novo bone generation, remodeling and adaptation of autograft in a common ovine femur model. Journal of the Mechanical Behavior of Biomedical Materials. 2011;4(6):829-40.
Tschumperlin DJ, Boudreault F, Liu F. Recent advances and new opportunities in lung mechanobiology. Journal of Biomechanics. 2010;43(1):99-107.
James H, Wang C, Thampatty BP. Chapter 7 Mechanobiology of Adult and Stem Cells. International Review of Cell and Molecular Biology. 2008;271:301-46.
Pérez MA, Prendergast PJ. Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation. Journal of Biomechanics. 2007;40(10):2244-53.
Loboa EG, Fang TD, Warren SM, Lindsey DP, Fong KD, Longaker MT, Carter DR. Mechanobiology of mandibular distraction osteogenesis: experimental analyses with a rat model. Bone. 2004;34(2):336-43.
Villemure I, Stokes IAF. Growth plate mechanics and mechanobiology. A survey of present understanding. Journal of Biomechanics. 2009;42(12):1793-1803.
Suresh S. Biomechanics and biophysics of cancer cells. Acta Biomaterialia. 2007;3(4):413-38.
Sauro H, Fell D. SCAMP: a metabolic simulator and control analysis program. Math Comput Model. 1991;15(12):15-28.
Mendes P. Gepasi: a software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput Appl Biosci. 1993;9:563-71.
Mendes P. Biochemistry by numbers: simulation of biochemical pathways with Gepasi. Trends Biochem Sci. 1997;22:361-63.
Johnson CG, Goldman JP, Gullick WJ. Simulating complex intracellular processes using object-oriented computational modelling. Progress in Biophysics and Molecular Biology. 2004;86(3):379-406.
Bertaud J, Qin Z, Buehler MJ. Intermediate filament-deficient cells are mechanically softer at large deformation: A multi-scale simulation study. Acta Biomaterialia. 2010;6(7):2457-66.
Sen S. Kumar S. Combining mechanical and optical approaches to dissect cellular mechanobiology. Journal of Biomechanics. 2010;43(1):45-54.
Sanz-Herrera JA, Moreo P, García-Aznar JM, Doblaré M. On the effect of substrate curvature on cell mechanics. Biomaterials. 2009;30(34):6674-86.
Kopacz AM, Liu WK, Liu SQ. Simulation and prediction of endothelial cell adhesion modulated by molecular engineering. Computer Methods in Applied Mechanics and Engineering. 2008;197(25-28):2340-52.
Shinbrot T, Chun Y, Caicedo-Carvajal C, Foty R. Cellular Morphogenesis In Silico. Biophysical Journal. 2009;97(4):958-67.
Skalak G, Dasgupta M, Moss E, Otten P. Analytical description of growth. Journal of Theoretical Biology. 1982;94.
Doblaré M, García-Aznar JM. On the numerical modeling of growth, differentiation and damage in structural living tissues. Arch Comput Meth Engng. 2006;11(4):471-513.
Humphrey JD. Mechanics of arterial wall: review and directions. Critic Rev biomed. 1995;23.
Kuhl E, Steinmann P. Theory and numerics of geometrically non-linear open system mechanics. Int J Numer Metho Engng. 2003;58.
Kuhl E, Steinmann P.Computational modeling of healing; an application of the material force method. Biomech Model Mechanobiol. 2004;2(4).
Garikipati K, Arruda EM, Grosh K, Narayanan H, Calve S. A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. Journal of the Mechanics and Physics solids. 2004;52(7).
Turing AM. The chemical basis of morphogenesis. Phil Trans R Soc Lond B. 1952;327:37-72.
Madzvamuse A. A Numerical approach to the study of spatial pattern formation. D. Phil Thesis. UK: Oxford University; 2000.
Wolpert L. Cell Behaviour-Cartilage morphogenesis in the limb. Cambridge University; 1982.
Dolnik M, Zhabotinsky A, Rovinsky AB, Epstein IR. Spatio-temporal patterns in a reaction-diffusion system with wave instability. Chemical Engineering Science. 2000; 55:223-31.
Dillon R, Gadgil C, Othmer H. Short- and long-range effects of sonic hedgehog in limb development. PNAS.2003;100(18):10152-7.
Madzvamuse A, Thomas R, Maini PK, Wathen A. A numerical approach to the study of spatial pattern formation in the ligaments of arcoidbivalves. Bulletin of Mathematical Biology. 2002;64(3):501-30.
Oster GF, Murray JD, Harris AK. Mechanical aspects of mesenchymal Morphogenesis. J Embryol Exp Morphol. 1983;78:83-125.
Bru A, Herrero MA. From The Physical Laws Of Tumor Growth To Modelling Cancer Processes. Mathematical Models and Methods in Applied Sciences. 2006;16(1).
Reis EA, Santos LBL, Pinho STR. A cellular automata model for avascular solid tumor growth under the effect of therapy. Physica A: Statistical Mechanics and its Applications. 2009;388(7):1303-14.
Namy P, Ohayon J, Tracqui P. Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. Journal of Theoretical Biology. 2004;227(1):103-20.
Shefelbine SJ. Mechanical Regulation of bone growth fronts and growth plates. PhD Thesis, Stanford University; 2002.
Shefelbine SJ, Tardieu C, Carter DR. Development of the femoral bicondylar angle in hominid bipedalism. Bone. 2002;30(5):765-70.
Garzón-Alvarado DA, Peinado LM, Cárdenas RP. A mathematical model of epiphyseal development: hypothesis of growth pattern of the secondary ossification centre. Computer Methods in Biomechanics and Biomedical Engineering. 2010;14(1):1476-8259.
Garzón-Alvarado DA. Peinado LM, Cárdenas RP. A mathematical model of epiphyseal development: hypothesis on the cartilage canals growth. Computer Methods in Biomechanics and Biomedical Engineering. 2010;13(6):1476-8259.
Klein-Nulend J, Bacabac RG, Mullender MG. Mechanobiology of bone tissue. Pathologie Biologie. 2005;53(10):576-80.
Loret B, Simões FMF. A framework for deformation, generalized diffusion, mass transfer and growth in multi-species multi-phase biological tissues. European Journal of Mechanics - A/Solids. 2005;24(5):757-81.
García-Aznar JM, Kuiper JH, Gómez-Benito MJ, Doblaré M, Richardson JB. Computational simulation of fracture healing: Influence of interfragmentary movement on the callus growth. Journal of Biomechanics. 2007;40(7):1467-76.
Doblaré M, García JM, Gómez M.J. Modelling bone tissue fracture and healing: a review. Engineering Fracture Mechanics, 2004;71(13-14):1809-40.
Gómez-Benito MJ, García-Aznar JM, Kuiper JH, Doblaré M. Influence of fracture gap size on the pattern of long bone healing: a computational study. Journal of Theoretical Biology. 2005;235(1):105-19.
Weis JA, Miga MI, Granero-Moltó F, Spagnoli A. A finite element inverse analysis to assess functional improvement during the fracture healing process. Journal of Biomechanics. 2010;43(3):557-62.
Isaksson H, Wilson W, van Donkelaar CC, Huiskes R, Ito K. Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. Journal of Biomechanics. 2006;39(8):1507-16.
Meroi EA, Natali AN. A numerical approach to the biomechanical analysis of bone fracture healing. Journal of Biomedical Engineering. 1989;11(5):390-7.
Wehner T, Claes L, Niemeyer F, Nolte D, Simon U. Influence of the fixation stability on the healing time A numerical study of a patient-specific fracture healing process. Clinical Biomechanics. 2010;25(6):606-12.
Landinez-Parra NS, Garzón-Alvarado DA, Vanegas-Acosta JC. A phenomenological mathematical model of the articular cartilage damage. Computer Methods and Programs in Biomedicine. In Press, Corrected Proof. Available online 12 March 2011. Disponible en: http://www.sciencedirect.com/science/article/pii/S0169260711000198
Wilson W. van Donkelaar CC, van Rietbergen B, Ito K, Huiskes R. Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. Journal of Biomechanics, 2004;37(3):357-66.
Wilson W, van Donkelaar CC, van Rietbergen R, Huiskes R.The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage. Medical Engineering & Physics. 2005;27(10):810-26.
Wilson W, van Rietbergen B, van Donkelaar CC, Huiskes R. Pathways of loadinduced cartilage damage causing cartilage degeneration in the knee after meniscectomy. Journal of Biomechanics. 2003;36(6):845-51.
Peña E, Calvo B, Martínez MA, Doblaré M. Computer simulation of damage on distal femoral articular cartilage after meniscectomies. Computers in Biology and Medicine. 2008;38(1):69-81.
Vanegas-Acosta JC, Landinez NS, Garzón-Alvarado DA, Casale MC. A finite element method approach for the mechanobiological modeling of the osseointegration of a dental implant. Computer Methods and Programs in Biomedicine. 2011;101(3):297-314.
Moreo P, García-Aznar JM, Doblaré M. Bone ingrowth on the surface of endosseous implants. Part 1: Mathematical model. Journal of Theoretical Biology. 2009;260(1):1-12.
Lin D, Li Q, Li W, Duckmanton N, Swain M.Mandibular bone remodeling induced by dental implant. Journal of Biomechanics. 2010;43(2):287-93.