2004, Número 3
Mecanismos moleculares de resistencia
Zamora-Valdés D, Chávez-Tapia NC, Méndez-Sánchez N
Idioma: Español
Referencias bibliográficas: 94
Paginas: 149-159
Archivo PDF: 100.41 Kb.
RESUMEN
Los mecanismos moleculares de la resistencia a la insulina constituyen una
variedad de complejas alteraciones en la señalización de la insulina y en la
regulación normal de la expresión y síntesis de adipocinas. Las principales
involucradas son TNF-a y los ácidos grasos libres. Hasta el momento, la
disminución de la fosforilación tirosina cinasa del receptor y sus sustratos,
junto con el aumento de la fosforilación serina cinasa, es el principal
candidato iniciador. Esta forma de activación no conduce la señal por la vía
de PI3-K, pero produce la activación de fosfatasas de fosfotirosina con
retroalimentación negativa sobre el receptor. La cinasa inhibidora del
NK-kB es el mediador de TNF-a para esta activación. El NK-kB disminuye
la expresión de PPAR-g y adiponectina, con disminución en sus efectos
protectores. La leptina posee efectos protectores, sin embargo, se cree
que existe una forma de resistencia a sus efectos en la obesidad. Los ácidos
grasos libres son probables mediadores sistémicos de la acción de TNF-a porque
producen resistencia hepática a la insulina y alteraciones en el metabolismo
de los lípidos e hidratos de carbono que desembocan en mayor resistencia a la
insulina. El objetivo de esta revisión es presentar los resultados de estudios
experimentales in vitro e in vivo y de estudios clínicos relacionados a la
resistencia a la insulina en la obesidad, para ilustrar el estado actual de
la investigación a nivel molecular.
REFERENCIAS (EN ESTE ARTÍCULO)
Himsworth HP. Diabetes mellitus: its differentiation into insulin-sensitive and insulin insensitive types. Lancet 1936; 1: 117-121.
Matthaei S, Stumvoll M, Kellerer M, Haring HU. Pathophysiology and pharmacological treatment of insulin resistance. Endocr Rev 2000; 21: 585-618.
Becker K. Principles and Practice of Endocrinology and Metabolism. Books@Ovid. 2001: Lippincott Williams & Wilkins.
Cline GW Petersen KF, Krssak M et al. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med 1999; 341: 240-6.
Kido Y, J Nakae, D. Accili. Clinical review 125: The insulin receptor and its cellular targets. J Clin Endocrinol Metab 2001; 86: 972-9.
Bruning JC, Michael MD, Winnay JN et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 1998; 2: 559-69.
Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 2000; 6: 87-97.
Sykiotis GP, Papavassiliou AG. Serine phosphorylation of insulin receptor substrate-1: a novel target for the reversal of insulin resistance. Mol Endocrinol 2001; 15: 1864-9.
Ahmad F, Azevedo JL, Cortright R, Dohm GL, Goldstein BJ. Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes. J Clin Invest 1997; 100: 449-58.
Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci USA 1994; 91: 4854-8.
Hotamisligil GS, Budavari A, Murray D, Spiegelman BM. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. J Clin Invest 1994; 94: 1543-9.
Rui L, Aguirre V, Kim JK et al. Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest 2001; 107: 181-9.
Gao Z, Hwang D, Bataille F, Lefevre M, York D, Quon MJ, Ye J. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem 2002; 277: 48115-21.
Cusi K, Maezono K, Osman A et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 2000; 105: 311-20.
Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 2000; 106: 165-9.
Bouzakri K, Roques M, Gual P et al. Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 2003; 52: 1319-25.
Saltiel AR. Putting the brakes on insulin signaling. N Engl J Med 2003; 349: 2560-2.
Du K, Herzig S, Kulkarni RN, Montminy M. TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 2003; 300: 1574-7.
Sakai J, Rawson RB. The sterol regulatory element-binding protein pathway: control of lipid homeostasis through regulated intracellular transport. Curr Opin Lipidol 2001; 12: 261-6.
Ono H, Shimano H, Katagiri H et al. Hepatic Akt activation induces marked hypoglycemia, hepatomegaly, and hypertriglyceridemia with sterol regulatory element binding protein involvement. Diabetes 2003; 52: 2905-13.
Standaert ML, Galloway L, Karnam P, Bandyopadhyay G, Moscat J, Farese RV. Protein kinase C-zeta as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes. Potential role in glucose transport. J Biol Chem 1997; 272: 30075-82.
Considine RV, Nyce MR, Allen LE et al. Protein kinase C is increased in the liver of humans and rats with non-insulin-dependent diabetes mellitus: an alteration not due to hyperglycemia. J Clin Invest 1995; 95: 2938-44.
Shepherd PR, Kahn BB. Glucose transporters and insulin action—implications for insulin resistance and diabetes mellitus. N Engl J Med 1999; 341: 248-57.
Stephens JM, Pekala PH. Transcriptional repression of the GLUT4 and C/EBP genes in 3T3-L1 adipocytes by tumor necrosis factor-alpha. J Biol Chem 1991; 266: 21839-45.
Siiteri PK. Adipose tissue as a source of hormones. Am J Clin Nutr 1987; 45: 277-82.
Flier JS, Cook KS, Usher P, Spiegelman BM. Severely impaired adipsin expression in genetic and acquired obesity. Science 1987; 237: 405-8.
Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004; 89: 2548-56.
Ganda OP. Lipoatrophy, lipodystrophy, and insulin resistance. Ann Intern Med 2000; 133: 304-6.
Bazzoni F, Beutler B. The tumor necrosis factor ligand and receptor families. N Engl J Med 1996; 334: 1717-25.
Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 1995; 95: 2111-9.
Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995; 95: 2409-15.
Schreyer SA. Chua SC, LeBoeuf RC. Obesity and diabetes in TNF-alpha receptor- deficient mice. J Clin Invest 1998; 102: 402-11.
Ruan H, Hacohen N, Golub TR, Van Parijs L, Lodish HF. Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes 2002; 51: 1319-36.
Ventre J, Doebber T, Wu M. Targeted disruption of the tumor necrosis factor-alpha gene: metabolic consequences in obese and nonobese mice. Diabetes 1997; 46: 1526-31.
Aleman G, Torres N, Tovar AR. Los receptores activados por proliferadores de peroxisomas (PPARs) en el desarrollo de obesidad y resistencia a la insulina. Rev Invest Clin 2004; 56: 351-367.
Wu Z, Xie Y, Morrison RF, Bucher NL, Farmer SR. PPARgamma induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts into adipocytes. J Clin Invest 1998; 101: 22-32.
Schoonjans K, Staels B, Auwerx J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res 1996; 37: 907-25.
Rosen ED, Spiegelman BM. PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem 2001; 276: 37731-4.
Pittas AG, Joseph NA, Greenberg AS. Adipocytokines and insulin resistance. J Clin Endocrinol Metab 2004; 89: 447-52.
Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 2001; 280: E745-51.
Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001; 286: 327-34.
Bastard JP, Jardel C, Bruckert E et al. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab 2000; 85: 3338-42.
Tsigos C, Papanicolaou DA, Kyrou I, Defensor R, Mitsiadis CS, Chrousos GP. Dose-dependent effects of recombinant human interleukin-6 on glucose regulation. J Clin Endocrinol Metab 1997; 82: 4167-70.
Steensberg A, Fischer CP, Sacchetti M et al. Acute interleukin-6 administration does not impair muscle glucose uptake or whole-body glucose disposal in healthy humans. J Physiol 2003; 548: 631-8.
Wallenius V, Wallenius K, Ahren B et al. Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 2002; 8: 75-9.
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425-32.
Considine RV, Sinha MK, Heiman ML et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996; 334: 292-5.
Mark AL, Correia ML, Rahmouni K, Haynes WG. Selective leptin resistance: a new concept in leptin physiology with cardiovascular implications. J Hypertens 2002; 20: 1245-50.
Montague CT, Farooqi IS, Whitehead JP et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997; 387: 903-8.
Clement K, Vaisse C, Lahlou N et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998; 392: 398-401.
Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, Kahn BB. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002; 415: 339-43.
Druce MR, Small CJ, Bloom SR. Minireview: Gut peptides regulating satiety. Endocrinology 2004; 145: 2660-5.
Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 1997; 385: 165-8.
Hynes GR, Jones PJ. Leptin and its role in lipid metabolism. Curr Opin Lipidol 2001; 12: 321-7.
Vanpatten S, Karkanias GB, Rossetti L, Cohen DE. Intracerebroventricular leptin regulates hepatic cholesterol metabolism. Biochem J 2004; 379: 229-33.
Cohen B, Novick D, Rubinstein M. Modulation of Insulin Activities by Leptin. Science 1996; 274: 1185-1188.
Leyva F, Godsland IF, Ghatei M et al. Hyperleptinemia as a component of a metabolic syndrome of cardiovascular risk. Arterioscler Thromb Vasc Biol 1998; 18: 928-33.
Munzberg H, Flier JS, Bjorbaek C. Region-Specific Leptin Resistance within the Hypothalamus of Diet-Induced-Obese Mice. Endocrinology 2004 (en prensa).
Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol 2004; 24: 29-33.
Haluzik M, Parizkova J, Haluzik MM. Adiponectin and its role in the obesity-induced insulin resistance and related complications. Physiol Res 2004; 53: 123-9.
Yamauchi T, Kamon J, Ito Y et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003; 423: 762-9.
Yamauchi T, Kamon J, Minokoshi Y et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8: 1288-95.
Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest 2003; 112: 91-100.
Hoffstedt J, Arvidsson E, Sjolin E, Wahlen K, Arner P. Adipose tissue adiponectin production and adiponectin serum concentration in human obesity and insulin resistance. J Clin Endocrinol Metab 2004; 89: 1391-6.
Hotta K, Funahashi T, Arita Y et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000; 20: 1595-9.
Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 2001; 7: 947-53.
Yamauchi T, Kamon J, Waki H et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001; 7: 941-6.
Steppan CM, Bailey ST, Bhat S et al. The hormone resistin links obesity to diabetes. Nature 2001; 409: 307-12.
Silha JV, Krsek M, Skrha JV, Sucharda P, Nyomba BL, Murphy LJ. Plasma resistin, adiponectin and leptin levels in lean and obese subjects: correlations with insulin resistance. Eur J Endocrinol 2003; 149: 331-5.
Muse ED, Obici S, Bhanot S et al. Role of resistin in diet-induced hepatic insulin resistance. J Clin Invest 2004; 114: 232-9.
Nurjhan N, Consoli A, Gerich J. Increased lipolysis and its consequences on gluconeogenesis in non-insulin-dependent diabetes mellitus. J Clin Invest 1992; 89: 169-75.
Patton JS, Shepard HM, Wilking H et al. Interferons and tumor necrosis factors have similar catabolic effects on 3T3 L1 cells. Proc Natl Acad Sci USA 1986; 83: 8313-7.
Foley JE. Rationale and application of fatty acid oxidation inhibitors in treatment of diabetes mellitus. Diabetes Care 1992; 15: 773-84.
Boden G, Cheung P, Stein TP, Kresge K, Mozzoli M. FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. Am J Physiol Endocrinol Metab 2002; 283: E12-9.
Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; 1: 785-9.
Yki-Jarvinen H, Daniels MC, Virkamaki A, Makimattila S, DeFronzo RA, McClain D. Increased glutamine:fructose-6-phosphate aminotransferase activity in skeletal muscle of patients with NIDDM. Diabetes 1996; 45: 302-7.
McClain DA, Crook ED. Hexosamines and insulin resistance. Diabetes 1996; 45: 1003-9.
Zierath JR, Galuska D, Nolte LA et al. Effects of glycaemia on glucose transport in isolated skeletal muscle from patients with NIDDM: in vitro reversal of muscular insulin resistance. Diabetologia 1994; 37: 270-7.
McClain DA, Alexander T, Cooksey RC, Considine RV. Hexosamines stimulate leptin production in transgenic mouse. Endocrinology 2000; 141: 1999-2002.
Accili D, Drago J. Early neonatal death in mice homozygous for a null allele of insulin receptor gene. Nat Genet 1996; 12: 106-109.
Bruning JC, Winnay J. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 1997; 2: 559-569.
Michael MD, Kulkarni RN. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 2000; 6: 87-97.
Kulkarni RN, Bruning JC. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 1999; 96: 329-333.
Tamemoto H, Kadowaki T, Tobe K et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 1994; 372: 186-190.
Withers DJ, Gutierrez JS, Towery H. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 1998; 391: 900-904.
Saltiel AR, Kahn CR. Insulin signaling and the regulation of glucose and lipid metabolism. Nature 2001; 414: 799-806.
Fantin VR, Wang Q. Mice lacking insulin receptor substrate 4 exhibit mild defects in growth, reproduction and glucose homeostasis. Am J Physiol Endocrinol Metab 2000; 278: E127-E133.
Elchelby M, Payette P. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999; 283: 1544-1548.
Cho H, Mu J. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001; 292: 1728-1731.
Katz EB, Stenbit AE. Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 1995; 377: 151-155.
Kim JK, Zisman A. Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. J Ciln Invest 2001; 108: 153-160.
Abel ED, Peroni OD. Adipose-selective targeting of the GLUT4 gene impairs insulin actino in muscle and liver. Nature 2001; 409: 729-733.
Barak K, Nelson MC, Ong ES et al. PPAR gamma is required for placental, cardiac and adipose tissue development. Mol Cell 1999; 4: 585-595.
Maeda N, Funahashi T. Adiponectin knockout mice. Nippon Rinsho 2001; 62: 1067-1076.