2002, Número 2
<< Anterior Siguiente >>
Rev Mex Ing Biomed 2002; 23 (2)
Utilización de materiales ferromagnéticos y NaCl para el mejoramiento de la distribución de la SAR en hipertermia oncológica
Vera HA, Leija SL, Sido MN, Marchal C, Hernández MY
Idioma: Español
Referencias bibliográficas: 34
Paginas: 99-108
Archivo PDF: 181.80 Kb.
RESUMEN
La hipertermia es una de las terapias utilizadas para combatir el cáncer, sin embargo, existe la necesidad de mejorar la técnica para evitar los daños a los tejidos sanos debidos a la elevación de temperatura. El trabajo presentado, muestra diferentes alternativas para lograr una hipertermia electromagnética local. Se muestran los resultados obtenidos de la utilización de diferentes materiales que pueden introducirse en el tumor, o cerca de él, con el fin de aprovechar el campo eléctrico y el campo magnético de la energía electromagnética radiada. Estos compuestos son: cloruro de sodio, ferrita y ferrofluidos. Se muestran los resultados obtenidos de las mediciones de temperatura realizadas en un fantoma TX150 basados en el método del impulso único.
REFERENCIAS (EN ESTE ARTÍCULO)
Adey WR. Biological effects of electromagnetic fields. Journal of cellular biochemistry 1993; 51: 410-416.
Grant EH. Interaction of radiowaves and microwaves with biological material. Br J Cancer 1982; 45: 1-4.
Jaulerry C, Gaboriaud G, Jouvie F. L’hyperthermie en cancérologie. Bases biologiques et aspects cliniques. XXIVème congrès de la société française des physiciens d’hôpital 1985.
Miro L. Effets biologiques des radio-fréquences. J Med Nucl Biophy 1992; 16: 153-157.
Meyer JL, Kapp DS. Normal-tissue effects of hyperthermia. Radiation tolerance of normal tissues, Ed.: Karger 1989; 23: 162-176.
Tomasovic SP. Biological basis for hyperthermia in cancer treatment. IEEE Engineering in medicine and biology society 10th Annual International Conference 1988.
Marchal C, Bey P, Metz R, Gaulard ML, Escanye JM, Robert J. Premiers résultats cliniques de l’utilisation conjointe: hyperthermie, radiothérapie, chimiothérapie. Bull Cancer 1981; 68: 286-292.
Sterzer F, Paglione RW, Mendecki J, Friedenthal E, Botstein. RF therapy for malignancy. Heating of malignant tissues (hyperthermia) by RF radiation presents a new tool in the arsenal of weapons against cancer. IEEE spectrum 1980: 32-37.
Guy A. Hystory of biological effects on medical applications of microwave energy. IEEE Trans on MTTS 1984; 32(9): 1182-1199.
Wust P, Nadobny J, Felix R, Deuflhard P, Louis A, Jhon W. Strategies for optimized application of annular-phased-array systems in clinical hyperthermia. Int J Hyperthermia 1991; 7: 157-173.
Cheung AY. Microwave and radiofrequency techniques for clinical hyperthermia. Br J Cancer 1982; 45: 16-24.
Cresson PY, Michel C, Dubois LM, ChivéPribetich J. Complete three-dimensional modeling of the microstrip-microslot applicators for microwave hyperthermia using FDTD method. IEEE MTT-S International microwave symposium diges 1994; 4: 539-542.
Deng T. Optimization of SAR distributions in liver and lung regions irradiated by the H-horn annular phased array hyperthermia system. IEEE transactions on microwave theory and techniques 1991; 39: 852-856.
Hand JW, James JR. Physical Techniques in clinical hyperthermia. Great Britain: Research studies press 1986.
Das SK, Clegg ST, Anscher MS, Samulski TV. Simulation of electromagnetically induced hyperthermia: a finite element gridding method. Int J Hyperthermia 1995; 11: 797-808.
Engin K, Tupchong L, Waterman FM, Nerlinger RE, Leeper DB. Optimization of hyperthermia with CT scanning. Int J Hyperthermia 1992; 8: 855-864.
ESHO-COMAC, Treatment planning and modelling in hyperthermia, vol. 1, first ed. Rome 1992.
Hornsleth SN. The finite difference time domain method and its application to hyperthermia simulations. 6th International Congress on Hyperthermic Oncology, Tucson, Arizona 1992.
Paulsen KD. Electromagnetic modeling in hyperthermia: current status and future directions. IEEE engineering in medicine and biology society 10th annual international conference 1988.
Jordan A, Scholz R, Wust P, et al. Magnetic fluid hypertermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible supermagnetic nanoparticles. Journal of magnetism and Magnetic Materials 1999; 201: 413-419.
Hiergeist R, Andra W, Buske N, et al. Application of magnetite ferrofluids for hyperthermia. Journal of magnetism and Magnetic Materials 1999; 201: 420-422.
Chan D, Kirpotin DB, Bunn PA. Synthesis and evaluation of coloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer. J Magn Mang Mater 1993; 122: 374-374.
Fannin PC, Sacife BKP. Relaxation and resonance in ferrofluis. J Magn Mang Mater 1993; 122: 159-163.
Paulsen KD. Electromagnetic modeling in hyperthermia: current status and future directions. IEEE engineering in medicine and biology society 10th Annual International Conference 1988.
Furse CM, Chen JY. The use of the frequency-dependent finite-difference time-domain method for induced current and SAR calculations for a heterogeneous model of the human body. IEEE Transactions on electromagnetic compatibility 1994; 36: 128-133.
Gandhi OP, Gao BQ, Chen JY. A frequency-dependent finite-difference time-domain formulation for induced current calculations in human beings. Bioelectromagnetics 1992; 13: 543-555.
Lau RW, Sheppard RJ, Howard G, Bleehen NM. The modelling of biological systems in three dimensions using the time domain finite-difference method: II. The application and experimental evaluation of the method in hyperthermia applicator design. Phys Med Biol 1986; 31: 1257-1266.
Mooibroek J, Zwamborn APM, Van den Berg PM, De Leeuw AAC, Lagendijk JJW. Pre-clinal applications of the Zwamborn-Van den Berg Weak CG/FFT method. COST 244 WG3 meeting on numerical methods in bioelectromagnetic research, Rome, 1993.
Schneider C. The measurement of power deposition in hyperthermia (tesis). Radiotherapy department. Amsterdam: University of Amsterdam 1994, pp. 131.
Schneider CJ, Engelberts N, Van Dijk JDP. Characteristics of passive RF field probe with fibre-optic link for measurements in liquid hyperthermia phantoms. Phys Med Biol 1991; 36: 461-474.
Laurent P, Konn AM, Mattei JL. High-sensitivity and broad-band techniques applied to magnetic susceptibility measurements in ferrofluids. J Magn Mang Mater 1993; 122: 164-167.
Niederst C. Mise au point et intégration en clinique d’un programme prévisionnel de calcul de la répartition du champ eléctrique et des températures induites par des applicateurs électromagnétiques. Tesis de la Universidad Paul Sabatier, Tolosa, Francia, 1997.
Vincent D. Contribution a l’étude magnétique et diélectrique de ferrofluides dans la bande spectrale 0.1-20 GHz. Tesis de la Universidad Jean Monnet, Saint Etienne, Francia, 1995.
Vera A. Contribution a l’etude d’un systeme d’hyperthermie profonde en cancerologie: Automatisation du traitement du signal, modélisation, validation de la distribution et de l’absorption du champo électrique a 27.12 MHz dans les tissus simulés. Tesis del Institut National Polytechnique de Lorraine, Nancy, Francia, 1998.