2011, Número 1
<< Anterior Siguiente >>
Rev Med UV 2011; 11 (1)
El ion calcio como segundo mensajero en el desarrollo del sistema nervioso
León-Iza M, Zarain-Herzberg Á
Idioma: Español
Referencias bibliográficas: 46
Paginas: 32-39
Archivo PDF: 595.36 Kb.
RESUMEN
El ion Calcio (Ca
2+) tiene un papel muy importante como segundo mensajero en el desarrollo del sistema nervioso (SN). La formación del encéfalo es un proceso complejo que ocurre bajo la dirección de un programa génico predefinido y la influencia del medio ambiente. El cerebro se origina en la etapa embrionaria de una porción restringida del ectodermo primitivo, el ectodermo neural, del cual nacen los precursores neurales. Desde allí, estas células deben migrar hasta su destino final, proliferar, diferenciarse y establecer contactos específicos. Durante estos eventos, ellas y su descendencia censan una gran variedad de señales extracelulares, ante las cuales responden conforme a su programa génico para dar lugar a la morfogénesis del SN. En dicho proceso, el Ca
2+ participa como segundo mensajero, dado que las señales mediadas por Ca
2+ acoplan los eventos membranales generados por las señales extracelulares con las cascadas bioquímicas citoplásmicas y los programas de expresión génica nucleares requeridos para el neurodesarrollo. El estudio de la transducción de señales por medio del Ca
2+ durante el desarrollo del SN ha sido fundamental para comprender los mecanismos moleculares y celulares por los cuales se forma el encéfalo y se producen alteraciones de dicho proceso. En este trabajo de revisión presentamos algunas evidencias del papel del Ca
2+ en los principales hitos del neurodesarrollo, con el objetivo de proporcionar el conocimiento actual del tema en el desarrollo del sistema nervioso y las alteraciones de dicho proceso.
REFERENCIAS (EN ESTE ARTÍCULO)
Carafoli E. y Brini M. Calcium pumps: structural basis for and mechanism of calcium transmembrane transport. Curr Opin Chem Biol 2000; 4 (2): 152-61.
Berridge MJ. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 2002; 32 (5-6): 235-49.
Berridge MJ, Bootman MD y Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003; 4 (7): 517-29.
Capozzi F, Casadei F y Luchinat C. EF-hand protein dynamics and evolution of calcium signal transduction: an NMR view. J Biol Inorg Chem 2006; 11 (8): 949-62.
Rizzuto R y Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 2006; 86 (1): 369-408.
Uhlen P y Fritz N. Biochemistry of calcium oscillations. Biochem Biophys Res Commun 2010; 396 (1): 28-32.
McAinsh MR y Pittman JK. Shaping the calcium signature. New Phytol 2009; 181 (2): 275-94.
Levine AJ. y Brivanlou AH. Proposal of a model of mammalian neural induction. Dev Biol 2007; 308 (2): 247-56.
Sasai Y, Lu B, Steinbeisser H y De Robertis EM. Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 1995; 377 (6551): 757.
Moreau M, Leclerc C, Gualandris-Parisot L y Duprat AM. Increased internal Ca2+ mediates neural induction in the amphibian embryo. Proc Natl Acad Sci USA 1994; 91 (26): 12639-43.
Godsave SF y Slack JM. Clonal analysis of mesoderm induction in Xenopus laevis. Dev Biol 1989; 134 (2): 486-90.
Leclerc C y cols. L-type calcium channel activation controls the in vivo transduction of the neuralizing signal in the amphibian embryos. Mech Dev 1997; 64 (1-2): 105-10.
Leclerc C, Lee M, Webb SE, Moreau M y Miller AL. Calcium transients triggered by planar signals induce the expression of ZIC3 gene during neural induction in Xenopus. Dev Biol 2003; 261 (2): 381-90.
Batut J,y cols. The Ca2+-induced methyltransferase xPRMT1b controls neural fate in amphibian embryo. Proc Natl Acad Sci USA 2005; 102 (42): 15128-33.
Gillespie LL, Paterno GD, Mahadevan LC y Slack JM. Intracellular signalling pathways involved in mesoderm induction by FGF. Mech Dev 1992; 38 (2): 99-107.
Gotz M y Huttner WB. The cell biology of neurogenesis. Nat Rev Mol Cell Biol 2005; 6 (10): 777-88.
Lipskaia L, Hulot JS y Lompre AM. Role of sarco/endoplasmic reticulum calcium content and calcium ATPase activity in the control of cell growth and proliferation. Pflugers Arch 2009; 457 (3): 673-85.
Lin JH y cols. Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Dev Biol 2007; 302 (1): 356-66.
Rakic P. Elusive radial glial cells: historical and evolutionary perspective. Glia 2003; 43 (1): 19-32.
Anthony TE, Klein C, Fishell G y Heintz N. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 2004; 41 (6): 881-90.
Weissman TA, Riquelme PA, Ivic L, Flint AC y Kriegstein AR. Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 2004; 43 (5): 647-61.
Benedito AB y cols. The transcription factor NFAT3 mediates neuronal survival. J Biol Chem 2005; 280 (4): 2818-25.
Li H y cols. Transcription factor MEF2C influences neural stem/progenitor cell differentiation and maturation in vivo. Proc Natl Acad Sci USA 2008; 105 (27): 9397-402.
Guan CB, Xu HT, Jin M, Yuan XB y Poo MM. Long-range Ca2+ signaling from growth cone to soma mediates reversal of neuronal migration induced by slit-2. Cell 2007; 129 (2): 385-95.
Gardel ML, Schneider IC, Aratyn-Schaus Y y Waterman CM. Mechanical Integration of Actin and Adhesion Dynamics in Cell Migration. Annu Rev Cell Dev Biol 2010; 26: 315-33.
Pomorski P. [Calcium regulation of cell migration]. Postepy Biochem 2009; 55 (2): 163-70.
Zheng JQ y Poo MM. Calcium signaling in neuronal motility. Annu Rev Cell Dev Biol 2007; 23: 375-404.
Komuro H y Kumada T. Ca2+ transients control CNS neuronal migration. Cell Calcium 2005; 37 (5): 387-93.
Nguyen T y Di Giovanni S. NFAT signaling in neural development and axon growth. Int J Dev Neurosci 2008; 26 (2): 141-5.
Meyer G y Feldman EL. Signaling mechanisms that regulate actinbased motility processes in the nervous system. J Neurochem 2002; 83 (3): 490-503.
Gomez TM y Zheng JQ. The molecular basis for calcium-dependent axon pathfinding. Nat Rev Neurosci 2006; 7 (2): 115-25.
Henley J y Poo MM. Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol 2004; 14 (6): 320-30.
Gomez TM, Robles E, Poo M y Spitzer NC. Filopodial calcium transients promote substrate-dependent growth cone turning. Science 2001; 291 (5510): 1983-7.
Schmidt JT, Morgan P, Dowell N y Leu B. Myosin light chain phosphorylation and growth cone motility. J Neurobiol 2002; 52 (3): 175-88.
Wen Z, Guirland C, Ming GL y Zheng JQ. A CaMKII/calcineurin switch controls the direction of Ca(2+)-dependent growth cone guidance. Neuron 2004; 43 (6): 835-46.
Dickson BJ. Rho GTPases in growth cone guidance. Curr Opin Neurobiol 2001; 11 (1): 103-10.
Fink CC y cols. Selective regulation of neurite extension and synapse formation by the beta but not the alpha isoform of CaMKII. Neuron 2003; 39 (2): 283-97.
Ming GL, Song HJ, Berninger B, Holt CE. Tessier-Lavigne M. y Poo M.M. cAMP-dependent growth cone guidance by netrin-1. Neuron 1997; 19 (6): 1225-35.
Wayman GA y cols. Regulation of axonal extension and growth cone motility by calmodulin-dependent protein kinase I. J Neurosci 2004; 24 (15): 3786-94.
Finkbeiner S. CREB couples neurotrophin signals to survival messages. Neuron 2000; 25(1): 11-4.
Michaelsen K y Lohmann C. Calcium dynamics at developing synapses: mechanisms and functions. Eur J Neurosci 2010; 32 (2): 218-223.
Cingolani LA y Goda Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 2008; 9 (5): 344-56.
Zhang W y Benson DL. Development and molecular organization of dendritic spines and their synapses. Hippocampus 2000; 10 (5): 512-26.
Zhang H, Webb DJ, Asmussen H, Niu S y Horwitz AF. A GIT1/PIX/Rac/ PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J Neurosci 2005; 25 (13): 3379-88.
Flavell SW y Greenberg ME. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu Rev Neurosci 2008; 31: 563-90.
Shalizi A y cols. A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 2006; 311 (5763): 1012-7.