2011, Número 1
<< Anterior Siguiente >>
Rev Mex Ing Biomed 2011; 32 (1)
Evaluación biomecánica de un modelo de defecto óseo en tibia de rata
Hernández-Flores C, Delgado A, Domínguez-Hernández VM
Idioma: Español
Referencias bibliográficas: 37
Paginas: 12-19
Archivo PDF: 78.51 Kb.
RESUMEN
El estudio de la reparación de un defecto óseo es importante en cirugía ortopédica y odontológica. Los defectos óseos pueden ser de tamaño crítico (no se reparan espontáneamente) o de tamaño no crítico (se reparan espontáneamente), en ambos tipos de defectos es necesario hacer estudios para inducir su completa reparación. El propósito de este trabajo fue valorar un modelo de defecto óseo no crítico por medio de análisis biomecánico destructivo de flexión a tres puntos en tibia de rata. Se estudiaron tres grupos, un grupo control intacto, un grupo con defecto y un tercer grupo con defecto al que se dejó reparar espontáneamente por 21 días. Encontramos diferencia significativa entre el grupo con defecto y el grupo control, esta diferencia significativa (p ‹ 0.05) le da validez al modelo al poder diferenciar entre estos grupos, además, la energía a carga máxima fue significativamente diferente entre el grupo con reparación espontánea y el grupo control, lo que indica que el defecto se encuentra en proceso de reparación. Los resultados muestran que con nuestro modelo se puede valorar el avance de la reparación de un defecto óseo no crítico por medio de análisis biomecánico. Nuestro modelo es de bajo costo y permite el estudio de nuevos materiales, métodos y/o sustancias que favorezcan la disminución del tiempo de reparación ósea.
REFERENCIAS (EN ESTE ARTÍCULO)
Pape HC, Pufe Th. Bone defect and nounions-What role does vascularity play in filling the gap? Injury 2010; (41): 553-554.
Keibl C, Fügl A, Zanoni G, Tangl S, Wolbank S, Redl H, Griensven M. Human adipose derived stem cells reduce callus volume upon BMP-2 administration in bone regeneration. Injury Int J Care Injured 2011.
Sharir A, Barak MM, Shahar R. Whole bone mechanics and mechanical testing. The Veterinary Journal 2008; (177): 8-17.
Manjulabala I, Lui Y, Epari DR, Roschger P, Shell H, Fratzl P, Duda GN. Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing. Bone 2009; (45): 185-192.
Albert H, Burstein PH D, Timothy M, Wright PH D. Fundamentals of orthopaedic biomechanic. Edit. Williams and Wilkins. (Baltimore, Maryland USA), 1994.
Buckwalter JA, Einhorn TA, Marsh LJ. Bone and joint Healing. CH8, RP-FPRG-0627. www.Iww.com.
Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. Int J Care Injured 2005; (36): 392-1404.
Dinatale E, Guercio E. Regeneración ósea guiada (GBR). Revisión de la literatura. Acta Odontol Venez 2008; 46(4): 554-561.
Lizarbe MA. Sustitutivos de tejidos: de los biomateriales a la ingeniería tisular. Rev R Acad Cienc Exact Fís Nat (Esp) 2007; 101(1): 227-249.
Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: An update. Injury. Int J Care Injured 2005; (36S): S20-S27.
Ochoandiano S. Relleno de cavidades óseas en cirugía maxillofacial con materiales aloplásticos. Rev Esp Cir Oral y Maxilofac 2007; (29): 21-32.
Reicherta JC, Saifzadeha S, Wullschlegera ME, Eparia DR, Schutza MA, Dudac GN, et al. The challenge of establishing preclinical models for segmental bone defect research. Biomaterials 2009; (30): 2149-2163.
Rojas S, Domínguez VM. Procedimientos, técnicas y comunicaciones en injertos óseos, investigación e información en ortopedia. Acta Ortopédica Mexicana 2002; (16): 225-230.
Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Müller R, Hubbell JA. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nature Biotechnology 2003; (21): 513-518.
Liebschner MAK. Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials 2004; (25): 1697-1714.
Navarro M, Michiardi A, Castano O, Planell JA. Biomaterials in orthopaedics. J R Soc Interface 2008; (5): 1137-58.
Andreassen TT, Fledelius Ch, Ejersted Ch, Oxlund H. Increases in callus formation and mechanical strength of healing fractures in old rats treated with parathyroid hormone. Acta Orthop Scand 2001; 72(3): 304–307.
Norma Oficial Mexicana NOM-062-ZOO-1999. Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Tomo DLXX No. 11 México, D.F. miércoles 22 de agosto de 2001. Diario Oficial.
Landry PS, Marino AA, Sadasivan KK, Albright JA. Bone injury response. An animal model for testing theories of regulation. Clin Orthop Relat Res 1996; (332): 260-73.
Neri R, Solís L, Villegas H. Estudio de la consolidación ósea en rata por microscopía electrónica de barrido ambiental. Vet Méx 2008; (39): 187-198.
Bak B, Andreassen TT. Reduced energy absorption of healed fracture in the rat. Acta Orthop Scand 1988; (59): 548-51.
Diez MP, Chávez D, Mercado R, Domínguez VM, Torres MA, Lomelí PA, Méndez J. Modelo experimental de fracturas y consolidación ósea en ratas. Rev Mex Ortop Traum 2002; (16): 113-117.
Guillerminet F, Beaupied H, Fabien-Soulè V, Tomè D, Benhamou CL, Roux C, Blais A. Hydrolyzed collagen improves bone metabolism and biomechanical parameters in ovariectomized mice: an in vitro and in vivo study. Bone 2010; (46): 827-834.
Siegel S, Castellan NJ. Nonparametric Statistics for the Behavioral Sciences (second edition). Edit. McGraw-Hill (New York), 1988.
Soucacos PN, Johnson EO, Babis G. An update on recent advances in bone regeneration. Injury, Int J Care Injured 2008; (39S2): S1-S4.
Drosse I, Volkmer E, Capanna R, De Biase P, Mutschler W, Schieker M. Tissue engineering for bone defect healing: an update on a Multi-component approach. Injury, Int J Care Injured 2008; (39S2): S9-S20.
De Long WG, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am 2007; 89(3): 649-658.
Anderson M, Dhert W, Bruijn J, Dalmeijer R, Leenders H, Blitterswijk C, Verbout A. Critical size defect in the Goat’s os ilium. Clinical Orthopaedics and Related Research 1999; (364): 231-239.
Nandi SK, Kundu B, Datta S, De DK, Basu D. The repair of segmental bone defects with porous bioglass: An experimental study in goat. Research in Veterinary Science 2009; (86): 162–173.
Nielsen FF, Karring T, Gogolewski S. Biodegradable guide for bone regeneration Polyurethane membranes tested in rabbit radius defects. Acta Orthop Scand 1992; (63): 66-69.
Nielsen HM, Andreassen TT, Ledet T, Oxlund H. Local injection of TGF-b increases the strength of tibial fractures in the rat. Acta Orthop Scand 1994; (65): 37-41.
Beaupied H, Lespessailles E, Benhamou CL. Evaluation of macrostructural bone biomechanics. Joint Bone Spine 2007; (74): 233-239.
Vashishth D. Small animal bone biomechanics. Bone 2008; (43): 794-797.
Cerrud SM, Narváez MY, Muñoz V, Schouwenaars R. Modelado del comportamiento mecánico del hueso (análisis de los efectos del grado de hidratación). Ingeniería Mecánica. Tecnología y Desarrollo 2005; (1): 223-232.
Hernández CJ, Keaveny TM. A biomechanical perspective on bone quality. Bone 2006; (39): 1173-1181.
Schriefer JL, Robling AG, Warden SJ, Fournier AJ, Mason JJ, Turner CH. A comparison of mechanical properties derived from multiple skeletal sites in mice. Journal of Biomechanics 2005; (38): 467-475.
Evaw FG. Mechanical properties of bone. Edit. Charles C Thomas (Springfiel IL), 1973.