2010, Número 3
<< Anterior Siguiente >>
Rev Esp Med Quir 2010; 15 (3)
Enescencia, principio y fin de una célula tumoral
Luna EDJ, Herrera GNE
Idioma: Español
Referencias bibliográficas: 50
Paginas: 165-172
Archivo PDF: 145.35 Kb.
RESUMEN
El organismo humano está en constante recambio celular. Un costo obvio de esta proliferación masiva y obligada es que por errores espontáneos en la replicación y reparación del ADN durante este enorme recambio celular pueden generarse genomas celulares con una lluvia de mutaciones somáticas. Algunas de las mutaciones más relevantes son las que ocurren en genes que están directamente implicados en el control del ciclo celular. Como resultado, los genes mutados ya no expresan a las proteínas que regulan el ciclo, o éstas se encuentran alteradas, lo cual culmina con la aparición de cáncer. Asimismo, las células cuentan con mecanismos bien establecidos de protección contra dichas transformaciones: la apoptosis y la inducción de senescencia celular. En individuos jóvenes las células senescentes actúan como un mecanismo de seguridad que previene la transformación tumoral. Sin embargo, en individuos mayores la acumulación de células senescentes promueve no sólo la aparición de este fenotipo, sino también la generación de un ambiente tisular que favorece la tumorigenicidad y la aparición de enfermedades degenerativas. ¿Qué ruta tomará una célula? ¿La senescencia o la apoptosis? Dependerá del daño que sufra la célula y del tipo de genes que se encuentren afectados en ella.
REFERENCIAS (EN ESTE ARTÍCULO)
Sharpless NE, DePinho RA. Telomeres, stem cells, senescence, and cancer. J Clin Invest 2004;113(2):160-168.
Marnett LJ, Plastaras JP. Endogenous DNA damage and mutation. Trends Genet 2001;17(4):214-221.
Chen J-H, Hales CN, Ozanne SE. DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res 2007;35(22):7417-7428.
Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007;8:729-740.
Collado M, Gil J, Efeyan A. Identification of oncogeneinduced senescence in pre-malignant lesions. Nature 2005;436:642.
Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005;436:720-724.
Chen JH, Stoeber K, Kingsbury S, Ozanne SE, et al. Loss of proliferative capacity and induction of senescence in oxidatively stressed human fibroblasts. J Biol Chem 2004;279:49439-49446.
Ogryzko VV, Hirai TH, Russanova VR, Barbie DA, et al. Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Mol Cell Biol 1996;16:5210-5218.
Chen J-H, Ozanne SE, Hales CN. Methods of cellular senescence induction using oxidative stress. In: Tollefsbol TO, editor. Methods in Molecular Biology: Biological Aging: Methods and Protocols. Totowa: Humana Press, 2007.
Blander G, De Oliveira RM, Conboy CM, Haigis M, et al. Superoxide dismutase 1 knock-down induces senescence in human fibroblasts. J Biol Chem 2003;278:38966-38969.
Konopka JB, Watanabe SM, Singer JW, Collins SJ, et al. Cell lines and clinical isolates derived from Ph1-positive chronic myelogenous leukemia patients express c-abl proteins with a common structural alteration. Proc Natl Acad Sci U S A 1985;82:1810-1814.
Tsujimoto Y, Gorham J, Cossman J, Jaffe E, et al. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 1985;229:1390-1393.
Croce CM. Oncogenes and cancer. N Engl J Med 2008;358(5):502-511.
Coller HA, Grandori C, Tamayo P, Colbert T, et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci U S A 2000;97(7):3260-3265.
Hydbring P, Bahram F, Su Y, Tronnersjö S, et al. Phosphorylation by Cdk2 is required for Myc to repress Rasinduced senescence in cotransformation. Proc Natl Acad Sci U S A 2010;107(1):58-63.
Karnoub AE, Weinberg RA. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 2008;9(7):517-531.
Serrano M, Lin AW, McCurrah ME, Beach D, et al. Oncogenic Ras provoques premature cell senescence associated with accumulation of p53 and p16ink4a. Cell 1997;88:593-602.
Schmitt CA, Fridman JS, Yang M, Lee S, et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 2002;109(3):335-346.
Collado M, Gil J, Efeyan A, Guerra C, et al. Tumour biology: senescence in premalignant tumours. Nature 2005;436(7051):642.
Ramjaun AR, Downward J. Ras and phosphoinositide 3-kinase: partners in development and tumorigenesis. Cell Cycle 2007;6(23):2902-2905.
Jung MS, Yun J, Chae HD, Kim JM, et al. p53 and its homologues, p63 and p73, induce a replicative senescence through inactivation of NF-Y transcription factor. Oncogene 2001;20:5818-5825.
Tsugu A, Sakai K, Dirks PB, Jung S, et al. Expression of p57(KIP2) potently blocks the growth of human astrocytomas and induces cell senescence. Am J Pathol 2000;157:919-932.
Fuxe J, Akusjarvi G, Goike HM, Roos G, et al. Adenovirusmediated overexpression of p15INK4B inhibits human glioma cell growth, induces replicative senescence, and inhibits telomerase activity similarly to p16INK4A. Cell Growth Differ 2000;11:373-384.
Sprenger CC, Vail ME, Evans K, Simurdak J, et al. Over-expression of insulin-like growth factor binding protein-related protein-1(IGFBP-rP1/ mac25) in the M12 prostate cancer cell line alters tumor growth by a delay in G1 and cyclin a associated apoptosis. Oncogene 2002;21:140-147.
Braig M, Schmitt CA. Oncogene-induced senescence: putting the brakes on tumor development. Cancer Res 2006;66(6):2881-2884.
Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 2005;6:611-622.
Kim NW, Piatyszek MA, Prowse KR, Harley CB, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994;266:2011-2015.
Passos JF, Saretzki G, Ahmed S, Nelson G, et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 2007;5:e110.
Zou Y, Sfeir A, Gryaznov SM, Shay JW, et al. Does a sentinel or a subset of short telomeres determine replicative senescence? Mol Biol Cell 2004;15:3709-3718.
Meier A, Fiegler H, Munoz P, Ellis P, et al. Spreading of mammalian DNA-damage response factors studied by ChIPchip at damaged telomeres. EMBO J 2007;26:2707-2718.
D’Adda di Fagagna F, Teo SH, Jackson SP. Functional links between telomeres and proteins of the DNA-damage response. Genes Dev 2004;18:1781-1799.
Paradis V, Youssef N, Dargere D, Ba N, et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinoma. Hum Pathol 2001;32:227-232.
Campisi J. Cellular senescence and apoptosis: how cellular responses might influence aging phenotypes. Exp Gerontol 2003;38:5-11.
Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 2005;120(4):513-522.
Krtolica A, Campisi J. Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int J Biochem Cell Biol 2002;34:1401-1414.
Liu D, Hornsby PJ. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res 2007;67:3117-3126.
Lee AC, Fenster BE, Ito H, Takeda K, et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 1999;274(12):7936-7940.
Chang BD, Watanabe K, Broude EV, Fang J, et al. Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proc Natl Acad Sci U S A 2000;97(8):4291-4296.
Ben-Porath I, Weinberg RA. When cells get stressed: an integrative view of cellular senescence. J Clin Invest 2004;113:8-13.
Krtolica A, Parrinello S, Lockett S, Desprez P, et al. Senescent fibroblast promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 2001;98:12072-12077.
Fridlyand J, Snijders AM, Ylstra B, Li H, et al. Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 2006;6:96.
http://www.semergen.es/semergen/articulo-13690.
Wang X, Wong SC, Pan J, Tsao SW, et al. Evidence of cisplatin-induced senescent-like growth arrest in nasopharyngeal carcinoma cells. Cancer Res 1998;58:5019-5022.
Park JI, Jeong JS, Han JY, Kim DI, et al. Hydroxyurea induces a senescence-like change of K562 human erythroleukemia cell. J Cancer Res Clin Oncol 2000;126:455-460.
Haq R, Brenton JD, Takahashi M, Finan D, et al. Constitutive p38HOG mitogen-activated protein kinase activation induces permanent cell cycle arrest and senescence. Cancer Res 2002;62:5076-5082.
Te Poele RH, Okorokov AL, Jardine L, Cummings J, et al. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 2002;62:1876-1883.
Elmore LW, Rehder CW, Di X, McChesney PA, et al. Adriamycin-induced senescence in breast tumor cells involves functional p53 and telomere dysfunction. J Biol Chem 2002;277:35509-35515.
Han Z, Wei W, Dunaway S, Darnowski JW, et al. Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J Biol Chem 2002;277:17154-17160.
Suzuki T, Minagawa S, Michishita E, Ogino H, et al. Induction of senescence-associated genes by 5-bromodeoxyuridine in HeLa cells. Exp Gerontol 2001;36:465-474.
Saretzki G. Cellular senescence in the development and treatment of cancer. Curr Pharm Des 2010;16(1):79-100.