2008, Número S2
<< Anterior Siguiente >>
Rev Med UV 2008; 8 (S2)
Usando neurotoxinas para entender el circuito cerebral que regula el ciclo vigilia-sueño
Blanco CCA, Shiromani PJ
Idioma: Español
Referencias bibliográficas: 56
Paginas: 24-36
Archivo PDF: 913.16 Kb.
RESUMEN
Una de las más importantes metas de una disciplina científicaes elaborar modelos que expliquen los fenómenos que se están estudiando. Así, para el caso de la neurofisiología del sueño y la vigilia, hay varios modelos bien establecidos que intentan explicar cómo está constituida, así como la forma en que opera la red neuronal que regula estos fenómenos. Por otro lado, los modelos no sólo explican cómo los fenómenos ocurren; sino además; de ellos se pueden derivar predicciones basadas en su lógica interna. Basados en estas predicciones, los modelos se ponen a prueba constantemente y así se constata su veracidad. En este capítulo se abordará algunos ejemplos de cómo en nuestro laboratorio hemos usado neurotoxinas para probar directamente varias hipótesis en donde se propone que ciertos grupos de neuronas regularían los estados de vigilancia. El propósito de usar neurotoxinas es destruir estas neuronas para luego observar los efectos de estas lesiones sobre el sueño y la vigilia. Así, se revisarán las lesiones de las neuronas noradrenérgicas del
locus coeruleus, de las histaminérgicas de núcleo tuberomamilar, de las neuronas colinérgicas del cerebro basal anterior, así como finalmente se relatará los efectos sobre los estados de vigilancia de las lesiones múltiples de estos mismos grupos neuronales. Cada parte fue tratada brevemente y se dejaron los detalles metodológicos para ser consultados en las referencias respectivas.
REFERENCIAS (EN ESTE ARTÍCULO)
Saper C.B., Scammell T.E., and Lu J. (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257-1263.
Inagaki N., Toda K., Taniuchi I., Panula P.,Yamatodani A., Tohyama M., Watanabe T., and Wada H. (1990) An analysis of histaminergic efferents of the tuberomammillary nucleus to the medial preoptic area and inferior colliculus of the rat. Exp. Brain Res. 80, 374-380.
Aston-Jones G. and Bloom F.E. (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci. 1, 876-886.
Foote S.L., Aston-Jones G., and Bloom F.E. (1980) Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc. Natl. Acad. Sci. U. S. A 77, 3033-3037.
Berridge C.W. and Foote S.L. (1991) Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus. J. Neurosci. 11, 3135-3145.
Berridge C.W., Page M.E., Valentino R.J., and Foote S.L. (1993) Effects of locus coeruleus inactivation on electroencephalographic activity in neocortex and hippocampus. Neuroscience 55, 381-393.
Berridge C.W., Isaac S.O., and Espana R.A. (2003) Additive wake-promoting actions of medial basal forebrain noradrenergic alpha1- and beta-receptor stimulation. Behav. Neurosci. 117, 350-359.
Berridge C.W. and Foote S.L. (1996) Enhancement of behavioral and electroencephalographic indices of waking following stimulation of noradrenergic beta-receptors within the medial septal region of the basal forebrain. J. Neurosci. 16, 6999-7009.
Berridge C.W. and Waterhouse B.D. (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev. 42, 33-84.
Crochet S. and Sakai K. (1999) Alpha-2 adrenoceptor mediated paradoxical (REM) sleep inhibition in the cat. Neuroreport 10, 2199-2204.
Peyron C., Tighe D.K., van den Pol A.N., de Lecea L., Heller H.C., Sutcliffe J.G., and Kilduff T.S. (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996-10015.
Greco M.A. and Shiromani P.J. (2001) Hypocretin receptor protein and mRNA expression in the dorsolateral pons of rats. Brain Res. Mol. Brain Res. 88, 176-182.
Bourgin P., Huitron-Resendiz S., Spier A.D., Fabre V., Morte B., Criado J.R., Sutcliffe J.G., Henriksen S.J., and de Lecea L. (2000) Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J. Neurosci. 20, 7760-7765.
Blanco-Centurion C., Gerashchenko D., Salin- Pascual R.J., and Shiromani P.J. (2004) Effects of hypocretin2-saporin and antidopamine-betahydroxylase- saporin neurotoxic lesions of the dorsolateral pons on sleep and muscle tone. European Journal of Neuroscience 19, 2741- 2752.
Aston-Jones G., Chen S., Zhu Y., and Oshinsky M.L. (2001) A neural circuit for circadian regulation of arousal. Nat. Neurosci. 4, 732-738.
Panula P., Pirvola U., Auvinen S., and Airaksinen M.S. (1989) Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience 28, 585-610.
Parmentier R., Ohtsu H., Djebbara-Hannas Z., Valatx J.L., Watanabe T., and Lin J.S. (2002) Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knockout mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J. Neurosci. 22, 7695-7711.
Lin J.S., Sakai K., and Jouvet M. (1994) Hypothalamo-preoptic histaminergic projections in sleep-wake control in the cat. Eur. J. Neurosci. 6, 618-625.
Takahashi K., Lin J.S., and Sakai K. (2006) Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci. 26, 10292-10298.
John J., Wu M.F., Boehmer L.N., and Siegel J.M. (2004) Cataplexy-active neurons in the hypothalamus: implications for the role of histamine in sleep and waking behavior. Neuron 42, 619-634.
Huang Z.L., Qu W.M., Li W.D., Mochizuki T., Eguchi N., Watanabe T., Urade Y., and Hayaishi O. (2001) Arousal effect of orexin A depends on activation of the histaminergic system. Proc. Natl. Acad. Sci. U. S. A 98, 9965-9970.
Gerashchenko D., Chou T.C., Blanco-Centurion C.A., Saper C.B., and Shiromani P.J. (2004) Effects of lesions of the histaminergic tuberomammillary nucleus on spontaneous sleep in rats. Sleep 27, 1275-1281.
Basheer R., Strecker R.E., Thakkar M.M., and McCarley R.W. (2004) Adenosine and sleep-wake regulation. Prog. Neurobiol. 73, 379-396.
Porkka-Heiskanen T., Strecker R.E., and McCarley R.W. (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99, 507-517.
Porkka-Heiskanen T., Strecker R.E., Thakkar M., Bjorkum A.A., Greene R.W., and McCarley R.W. (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276, 1265-1268.
Basheer R., Porkka-Heiskanen T., Stenberg D., and McCarley R.W. (1999) Adenosine and behavioral state control: adenosine increases c-Fos protein and AP1 binding in basal forebrain of rats. Brain Res. Mol. Brain Res. 73, 1-10.
Portas C.M., Thakkar M., Rainnie D.G., Greene R.W., and McCarley R.W. (1997) Role of adenosine in behavioral state modulation: a microdialysis study in the freely moving cat. Neuroscience 79, 225-235.
Basheer R., Arrigoni E., Thatte H.S., Greene R.W., Ambudkar I.S., and McCarley R.W. (2002) Adenosine induces inositol 1,4,5-trisphosphate receptor-mediated mobilization of intracellular calcium stores in basal forebrain cholinergic neurons. J. Neurosci. 22, 7680-7686.
Arrigoni E., Chamberlin N.L., Saper C.B., and McCarley R.W. (2006) Adenosine inhibits basal forebrain cholinergic and noncholinergic neurons in vitro. Neuroscience 140, 403-413.
Duque A., Balatoni B., Detari L., and Zaborszky L. (2000) EEG correlation of the discharge properties of identified neurons in the basal forebrain. J Neurophysiol 84, 1627-1635.
Blanco-Centurion C., Xu M., Murillo-Rodriguez E., Gerashchenko D., Shiromani A.M., Salin- Pascual R.J., Hof P.R., and Shiromani P.J. (2006) Adenosine and sleep homeostasis in the Basal forebrain. J. Neurosci. 26, 8092-8100.
Gritti I., Henny P., Galloni F., Mainville L., Mariotti M., and Jones B.E. (2006) Stereological estimates of the basal forebrain cell population in the rat, including neurons containing choline acetyltransferase, glutamic acid decarboxylase or phosphate-activated glutaminase and colocalizing vesicular glutamate transporters. Neuroscience 143, 1051-1064.
Alam M.N., Szymusiak R., Gong H., King J., and McGinty D. (1999) Adenosinergic modulation of rat basal forebrain neurons during sleep and waking: neuronal recording with microdialysis. J. Physiol 521 Pt 3, 679-690.
Eggermann E., Serafin M., Bayer L., Machard D., Saint-Mleux B., Jones B.E., and Muhlethaler M. (2001) Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience 108, 177-181.
Espana R.A., Baldo B.A., Kelley A.E., and Berridge C.W. (2001) Wake-promoting and sleepsuppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience 106, 699- 715.
Thakkar M.M., Ramesh V., Strecker R.E., and McCarley R.W. (2001) Microdialysis perfusion of orexin-A in the basal forebrain increases wakefulness in freely behaving rats. Arch. Ital. Biol. 139, 313-328.
Lee M.G., Manns I.D., Alonso A., and Jones B.E. (2004) Sleep-wake related discharge properties of basal forebrain neurons recorded with micropipettes in head-fixed rats. J. Neurophysiol. 92, 1182- 1198.
Jasper H.H. and Tessier J. (1971) Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science 172, 601-602.
Szerb J.C. (1967) Cortical acetylcholine release and electroencephalographic arousal. J. Physiol 192, 329-343.
Greco M.A., Lu J., Wagner D., and Shiromani P.J. (2000) c-Fos expression in the cholinergic basal forebrain after enforced wakefulness and recovery sleep. Neuroreport 11, 437-440.
Longo V.G. (1966) Behavioral and electroencephalographic effects of atropine and related compounds. Pharmacol. Rev. 18, 965-996.
Berntson G.G., Shafi R., and Sarter M. (2002) Specific contributions of the basal forebrain corticopetal cholinergic system to electroencephalographic activity and sleep/waking behaviour. Eur. J. Neurosci. 16, 2453-2461.
Gutierrez H., Gutierrez R., Silva-Gandarias R., Estrada J., Miranda M.I., and Bermudez-Rattoni F. (1999) Differential effects of 192IgG-saporin and NMDA-induced lesions into the basal forebrain on cholinergic activity and taste aversion memory formation. Brain Res. 834, 136-141.
Marcus J.N., Aschkenasi C.J., Lee C.E., Chemelli R.M., Saper C.B., Yanagisawa M., and Elmquist J.K. (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp Neurol. 435, 6-25. 45. Fadel J., Pasumarthi R., and Reznikov L.R. (2005) Stimulation of cortical acetylcholine release by orexin A. Neuroscience 130, 541-547.
Blanco-Centurion C., Shiromani A., Winston E., and Shiromani P.J. (2006) Effects of hypocretin-1 in 192-IgG-saporin-lesioned rats. Eur. J. Neurosci. 24, 2084-2088.
Bassant M.H., Apartis E., Jazat-Poindessous F.R., Wiley R.G., and Lamour Y.A. (1995) Selective immunolesion of the basal forebrain cholinergic neurons: effects on hippocampal activity during sleep and wakefulness in the rat. Neurodegeneration. 4, 61-70.
Kapas L., Obal F., Jr., Book A.A., Schweitzer J.B., Wiley R.G., and Krueger J.M. (1996) The effects of immunolesions of nerve growth factor-receptive neurons by 192 IgG-saporin on sleep. Brain Res. 712, 53-59.
Mochizuki T., Crocker A., McCormack S., Yanagisawa M., Sakurai T., and Scammell T.E. (2004) Behavioral state instability in orexin knockout mice. J. Neurosci. 24, 6291-6300.
Blanco-Centurion C., Gerashchenko D., and Shiromani P.J. (2007) Effects of saporin-induced lesions of three arousal populations on daily levels of sleep and wake. J Neurosci. 27, 14041-14048.
Jones B.E. (2005) From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol. Sci. 26, 578-586.
Szymusiak R., Alam N., and McGinty D. (2000) Discharge patterns of neurons in cholinergic regions of the basal forebrain during waking and sleep. Behav. Brain Res. 115, 171-182.
Gerashchenko D., Kohls M.D., Greco M., Waleh N.S., Salin-Pascual R., Kilduff T.S., Lappi D.A., and Shiromani P.J. (2001) Hypocretin-2-saporin lesions of the lateral hypothalamus produce narcoleptic-like sleep behavior in the rat. J. Neurosci. 21, 7273-7283.
Li Y., Gao X.B., Sakurai T., and van den Pol A.N. (2002) Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron 36, 1169-1181.
Hunsley M.S., Curtis W.R., and Palmiter R.D. (2006) Behavioral and sleep/wake characteristics of mice lacking norepinephrine and hypocretin. Genes Brain Behav. 5, 451-457.
Hunsley M.S. and Palmiter R.D. (2004) Altered sleep latency and arousal regulation in mice lacking norepinephrine. Pharmacol. Biochem. Behav. 78, 765-773.
Adamantidis A.R., Zhang F., Aravanis A.M., Deisseroth K., and de Lecea L. (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420- 424.