2009, Número 2
<< Anterior Siguiente >>
Enf Infec Microbiol 2009; 29 (2)
Mecanismo de resistencia a antimicrobianos en bacterias
Becerra G, Plascencia A, Luévanos A, Domínguez M, Hernández I
Idioma: Español
Referencias bibliográficas: 60
Paginas: 70-76
Archivo PDF: 154.74 Kb.
RESUMEN
La resistencia a antimicrobianos es un problema de salud pública. Los mecanismos pueden ser intrínsecos o adaptativos. Los primeros pueden capacitar a la bacteria para que produzca enzimas que destruyan al fármaco antibacteriano, expresar sistemas
efflux de excreción que eviten que el fármaco alcance su blanco intracelular, modificar el sitio blanco del antimicrobiano o generar una vía metabólica alterna que evite la acción del fármaco. Entre los mecanismos adaptativos, encontramos las adaptaciones fenotípicas, sea por el estado metabólico de la bacteria, o por ser secundaria a su capacidad de producir biopelículas. En esta revisión, mencionamos los principales mecanismos relacionados con la resistencia a antimicrobianos.
REFERENCIAS (EN ESTE ARTÍCULO)
French GL. “What’s new and not so new on the antimicrobial horizon?” Clin Microbiol Infect 2008; (14)6: 19-29.
Rammelkamp CH ,Maxon T. “Resistance of Sthaphylococcus aureus to the action of penicilin”. Proc Royal Soc Exper 1942; Biol. Med 51: 386-389.
Jevons MP. “Celbenin-resistant staphylococci”. Br Med J 1961; (1): 124-125.
Katayama Y, Ito T, Hiramatsu K. “A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus”. Antimicrob Agents Chemother 2000; (44): 1549-1555.
Lowy FD. “Antimicrobial resistance: The example of Sthaphylococcus aureus”. J Clin Inv 2003; 111(5): 1265-1273.
Kirst HA, Thompson DG, Nicas T. “Historical yearly usage of vancomycin”. Antimicrob Agents Chemother 1998; (42): 1303–1304.
“Staphylococcus aureus resistant to vancomycin”. Estados Unidos. MMWR 2002; (51): 565-567.
Calbo E, Romani V, Xercavins M, Gomez L, Vidal CG, Quintana S, Vila J, Garau J. “Risk factors for communityonset urinary tract infections due to Escherichia coli harbouring extended-spectrum beta-lactamases. J Antimicrob Chemother 2006; 57(4): 780-783.
Bagattini M, Crivaro V, Di Popolo A, Zarrilli R. “Molecular epidemiology of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit”. J Antimicrob Chemother 2006; 57(5): 979-982.
Dubois et al. “Beta-lactam and aminoglycoside resistance rates and mechanisms among Pseudomonas aeruginosa in French general practice (community and private healthcare centres)”. J Antimicrob Chemother 2008; 62(2):316-323.
Cohn DL, Bustreo F, Raviglione MC. “Drug resistant tuberculosis: Review of the worldwide situation and the WHO/IUATLD global surveillance project”. Clin Infect Dis 1997; 24: S121–S130.
Vila J, Martínez JL. “Clinical impact of the over-expression of efflux pump in nonfermentative Gram-negative bacilli, development of efflux pump inhibitors”. Curr Drug Targets 2008; (9): 797-807.
Poole K. “Efflux mediated multi-resistance in Gramnegative bacteria”. Clin Microbiol Infect 2004; (10): 12-26.
Poole, K. “Efflux mediated antimicrobial resistance”. J Antimicrob Chemother 2005; (56): 20-51.
Poole K, Srikumar R. “Multidrug efflux in Pseudomonas aeruginosa: Components, mechanisms, and clinical significance”. Curr Top Med Chem 2001; 1: 59–71.
Ziha-Zarifi I, Llanes C, Köhler T, Pechère J-C, Plésiat P. “In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA–MexB–OprM”. Antimicrob Agents Chemother 1999; 43: 287-291.
Oh H, Stenhoff J, Jalal S, Wretlind B. “Role of efflux pumps and mutations in genes for topoisomerases II and IV in fluoroquinolone-resistant Pseudomonas aeruginosa strains”. Microb Drug Resist 2003; 9: 323-328.
Hocquet D, Bertand X, Kohler T, Talon D, Plésiat P. “Genetic and phenotypic variations of a resistant Pseudomonas aeruginosa epidemic clone”. Antimicrob Agents Chemother 2003; 47: 1887-1894.
Rosenberg EY, Ma D, Nikaido H. “AcrD of Escherichia coli is an aminoglycoside efflux pump”. J Bacteriol 2000;182: 1754-1756.
Bavro VN et al. “Assembly and channel opening in a bacterial drug efflux machine”. Mol Cell 2008; 11 30(1):114-121.
Nishino K, Yamaguchi A. “Analysis of the complete library of putative drug transporter genes in Escherichia coli”. J Bacteriol 2001; 183: 5803-5812.
Mazzariol A, Tokue Y, Kanegawa TM, Cornaglia G, Nikaido H. “High level fluoroquinolone resistant clinical isolates of Escherichia coli over produce multidrug efflux protein AcrA”. Antimicrob Agents Chemother 2000; 44:3441-3443.
Oethinger M, Kern WV, Jellen-Ritter AS, McMurry LM, Levy SB. “Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump”. Antimicrob Agents Chemother 2000; 44: 10-13.
Webber MA, Piddock LJV. “Absence of mutations in marAB or soxRS in acrB-overexpressing fluoroquinoloneresistant clinical and veterinary isolates of Escherichia coli”. Antimicrob Agents Chemother 2001; 45: 1550-1552.
Baucheron S et al. “AcrAB–TolC directs effluxmediated multidrug resistance in Salmonella enterica serovar Typhimurium DT104”. Antimicrob Agents Chemother 2004; 48:3729-3735.
Giraud E, Cloeckaert A, Kerboeuf D, Chaslus-Dancla E. “Evidence for active efflux as the primary mechanism of resistance to ciprofloxacin in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2000; 44:1223-1228.
Piddock LVJ, White DG, Gensberg K, Pumbwe L, Griggs DJ. “Evidence for an efflux pump mediating multiple antibiotic resistance in Salmonella enterica serovar Typhimurium”. Antimicrob Agents Chemother 2000; 44:3118-3121.
Veal WL, Nicholas RA, Shafer WM. “Overexpression of the MtrC–MtrD–MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae”. J Bacteriol 2002; 184:5619-5624.
Neyfakh AA. “The multidrug efflux transporter of Bacillus subtilis is a structural and functional homolog of the Staphylococcus NorA protein”. Antimicrob Agents Chemother 1992; 36: 484-485.
DeMarco CE et al. “Efflux-related resistance to norfloxacin, dyes, and biocides in bloodstream isolates of Staphylococcus aureus”. Antimicrob Agents Chemother 2007; 51(9):3235-3239.
Horii T, Suzuki Y, Takeshita A, Maekawa M. “Molecular characterization of 8-methoxyfluoroquinolone resistance in a clinical isolate of methicillin-resistant Staphylococcus aureus”. Chemotherapy 2007; 53(2): 104-109.
Kaatz GW, Seo SM, Ruble CA. “Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus”. Antimicrob Agents Chemother 1993; 37: 1086-1094.
Ng EY, Truckis M, Hooper DC. “Quinolone resistance mediated by norA: Physiologic characterization and relationship to flqB, a quinolone resistance locus on the Staphylococcus aureus chromosome”. Antimicrob Agents Chemother 1994; 38: 1345-1355.
Jones ME, Boenink NM, Verhoef J, Kohrer K, Schmitz F-J. “Multiple mutations conferring ciprofloxacin resistance in Staphylococcus aureus demonstrate the long term stability in an antibiotic free environment”. J Antimicrob Chemother 2000; 45: 353-356.
Noguchi N, Okada H, Narui K, Sasatsu M. “Comparison of the nucleotide sequence and expression of norA genes and microbial susceptibility in 21 strains of Staphylococcus aureus”. Microb Drug Resist 2004; .10: 197-203.
Gill MJ, Brenwald NP, Wise R. “Identification of an efflux pump gene, pmrA, associated with fluoroquinolone resistance in Streptococcus pneumoniae”. Antimicrob Agents Chemother 1999; 43: 187-189.
Ambrose KD, Nisbet R, Stephens DS. “Macrolide efflux in Streptococcus pneumoniae is mediated by a dual efflux pump (mel and mef) and is erythromycin inducible”. Antimicrob Agents Chemother 2005; 49: 4203-4209.
McDermott W. “Microbial persistence”. Yale J Biol Med 1958; 30: 257-291.
Paramasivan CN, Sulochana S, Kubendiran G, Venkatesan P, Mitchison DA. “Bactericidal action of gatifloxacin, rifampin, and isoniazid on logarithmic and stationary-phase cultures of Mycobacterium tuberculosis”. Antimicrob Agents Chemother 2005; 49: 627-631.
Herbert D et al. Bactericidal action of ofloxacin, sulbactam- ampicillin, rifampin, and isoniazid onlogarithmic- and stationary-phase cultures of Mycobacterium tuberculosis”. Antimicrob Agents Chemother 1996; 40: 2296-2299.
McCune RM, Tompsett R. “Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. 1. The persistence of drug-susceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy”. J Exp Med 1956; 104: 737-762.
Toman K. “Bacterial persistence in leprosy”. Int J Lepr y Mycobact Dis 1981; 49: 205-217.
Fitoussi F et al. “Molecular DNA analysis for differentiation of persistence or relapse from recurrence in treatment failure of Streptococcus pyogenes pharyngitis”. Eur J Clin Microbiol Infect Dis 1997; 16: 233-237.
Clement S et al. “Evidence of an intracellular reservoir in the nasal mucosa of patients with recurrent Staphylococcus aureus rhinosinusitis”. J Infect Dis 2005; 192: 1023-1028.
Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. “Bacterial persistence as a phenotypic switch”. Science 2004; 305: 1622-1625.
Barclay ML, Begg EJ, Chambers ST. “Adaptive resistance following single doses of gentamicin in a dynamic in vitro model”. Antimicrob Agents Chemother 1992; 36: 1951-1957.
Wiuff C et al. “Phenotypic tolerance: Antibiotic enrichment of non-inherited resistance in bacterial populations”. Antimicrob Agents Chemother 2005; 49: 1483-1494.
Miller C et al. “SOS response induction by -lactams and bacterial defense against antibiotic lethality”. Science 2004; 305: 1629-1631.
Debbia EA, Roveta S, Schito AM, Gualco L, Marchese A. “Antibiotic persistence: The role of spontaneous DNA repair response”. Microb Drug Resist 2001; 7: 335-342.
Callow JA, Callow ME. “Biofilms”. Prog Mol Subcell Biol 2006; 42: 141-169.
Gilbert P, Allison DG, McBain AJ. “Biofilms in vitro and in vivo: Do singular mechanisms imply cross-resistance?” J Appl Microbiol 2002; 92: 98S-110S.
Stewart PS. “Mechanisms of antibiotic resistance in bacterial bio-films”. Int J Med Microbiol 2002; 292: 107-113.
Costerton JW, Stewart PS, Greenberg EP. “Bacterial biofilms: A common cause of persistent infections”. Science 1999; 284: 1318-1322.
Lewis K. “Riddle of biofilm resistance”. Antimicrob Agents Chemother 2001; 45: 999-1007.
Anderl JN, Franklin MJ, Stewart PS. “Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin”. Antimicrob Agents Chemother 2000; 44: 1818-1824.
Anderl JN, Zahller J, Roe F, Stewart PS. “Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin”. Antimicrob Agents Chemother 2003; 47: 1251-1256.
Gilbert P, Collier PJ, Brown MRW. “Influence of growthrate on susceptibility to antimicrobial agents—biofilms, cell-cycle, dormancy, and stringent response”. Antimicrob Agents Chemother 1990; 34: 1865-1868.
Southey-Pillig CJ, Davies DG, Sauer K. “Characterization of temporal protein production in Pseudomonas aeruginosa biofilms”. J Bacteriol 2005; 187: 8114-8126.
Walters MC III, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. “Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin”. Antimicrob Agents Chemother 2003; 47: 317-323.
Hoffman LF, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller S. “Aminoglycoside antibiotics induce bacterial biofilm formation”. Nature 2005; 436: 1171-1175.