2009, Número 3
<< Anterior Siguiente >>
Arch Neurocien 2009; 14 (3)
Neuroanatomía funcional de la memoria
Solís H, López-Hernández E
Idioma: Español
Referencias bibliográficas: 80
Paginas: 176-187
Archivo PDF: 181.50 Kb.
RESUMEN
Aprendizaje y memoria son procesos neurobiológicos íntimamente relacionados, que nos resultan indispensables para tener una vida de relación. En esta revisión se exponen de manera integral los aspectos de la neuroanatomía funcional relacionados con los dos fenómenos neurobiológicos antes mencionados para facilitar su comprensión. La interacción funcional repetitiva de diversas estructuras neuroanatómicas, ensambladas en circuitos neuronales específicos provocan el reforzamiento de las conexiones sinápticas involucradas y, los cambios de plasticidad sináptica que se requieren para establecer los procesos de aprendizaje y memoria. Estos procesos nos acompañan a lo largo de la vida y pueden afectarse a cualquier edad. Por ejemplo las alteraciones del hipocampo se manifiestan por trastornos de la memoria reciente o por la incapacidad para adquirir nuevos conocimientos. Lesiones en otras áreas encefálicas, corticales y neocorticales específicas ocasionan alteraciones particulares relacionadas con el sitio de lesión y el nivel de integración funcional. Los recuerdos, una vez convertidos en su forma duradera son relativamente estables. No obstante, con el tiempo, tanto la memoria a largo plazo como la capacidad para recordar cambian y disminuyen de manera gradual. Es importante continuar con trabajos de investigación encaminados a entender cada vez más y mejor los diversos eventos y estructuras que determinan el aprendizaje y la memoria.
REFERENCIAS (EN ESTE ARTÍCULO)
Programa Nacional de Salud 2001-2006 Primera edición, 2001. Secretaria de Salud. http://www.ssa.gob.mx [29.09.2006].
Kandel ER, Schwartz JH. Molecular biology of learning: modulation of transmitter release. Science 1982; Oct 29; 218: 433-43.
Kandel RE, Kupfermann I, Iversen S. Aprendizaje y memoria. In: Kandel RE, Schwartz HJ, Jessell MT, eds. Principios de neurociencia. Madrid: McGraw-Hill Interamericana; 2001;1227- 46.
Bear MF, Connors BW, Paradiso MA. Sistemas de la memoria. In Bear MF, Connors BW, Paradiso MA. Neurociencia explorando el cerebro. Barcelona: Masson-Williams & Wilkins; 1998;514-45.
Leff P, Romo-Parra H, Medécigo M, Gutiérrez R, Anton B. Synaptic plasticity: understanding the neurobiological mechanisms of learning and memory. Part I. Salud Mental 2001; 24(2):43-9.
Pujol GX. Paisajes en el cerebro. http://www.elpais.com/articulo/ futuro/Paisajes/cerebro/elpepusocfut/2006 El Pais.es [03.05.2006].
Vázquez GH. Neuroanatomía de la Memoria. Diagnóstico en neurociencias. http://www.neurodiagnostico.com.ar info@diagnostico.com.ar Octubre - Año 2005. [12.02.2006].
Morgado I. Psicobiología del aprendizaje y la memoria: fundamentos y avances recientes. Rev Neurol 2005; 40(5): 289-97.
Purves D, Augustine GJ, Fitzpatrick D, Katz LC, La Mantia AS, Mc Namara JO. Memoria Humana. In: Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia AS, Mc Namara JO. Invitación a la neurociencia. Argentina: Editorial Médica Panamericana; 2001; 597-611.
Deutsch JA, Deutsch D. Attention: some theoretical considerations. Psychol Rev 1963; 70: 80-90.
Hernández-Peon R, Scherrer H, Jouvet M. Modification of electric activity in cochlear nucleus during attention in unanesthetized cats. Science 1956;24;123(3191):331-2.
Hillyard SA, Vogel EK, and Luck SJ. Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Phil Trans R. Soc Lond B 1998; 353:1257-70.
Broca P. Remarks on the seat of the faculty of articulate language, followed by an observation of aphemia. In: Some Papers on the Cerebral Cortex. Charles C. Thomas Publisher, Springfield, Illinois, 1960;49-72.
Milner B, Squire LR, and Kandel ER. Cognitive neuroscience and the study of memory. Neuron 1998; 20: 445-68,
Monod-Broca P. Broca Paul. 1824-1880. Ann Chir 2001; 126(8): 801-7.
Roth HL. Finding language in the matter of the brain: origins of the clinical aphasia examination. Semin Neurol 2002; 22(4): 335-48.
Sabbatini RME. A Brief Biography of Pierre Paul Broca. http:// www.cerebromente.org.br/n02/historia/broca.htm [12.062006].
Leff P, Romo-Parra H, Calva JC, Acevedo R, Gutiérrez R, Anton B. Synaptic Plasticity: understanding the neurobiologicalmechanisms of learning and memory. Part II. Salud Mental 2001; 24(3):35-44.
Thompson RF. The neurobiology of learning and memory. Science 1986; 233(4767): 941-47.
Thompson RF. In search of memory traces. Annu Rev Psychol 2005; 56:1-23.
Penfield W. Functional localization in temporal and deep sylvian areas. Res Publ Assoc Res Nerv Ment Dis 1958; 36:210-26.
22.Wilder Graves Penfield. http://www.whonamedit.com/ doctor.cfm/3099.html [2.10.2006]
Bliss TVP and Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetizad rabbit following stimulation of the perforant path. J Physiol 1973; 32: 331-56.
Bliss TVP and Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993; 361: 31-9.
Leff P, Matus M, Hernández A, Medécigo M, Torner C, Antón B. Understanding the Neurobiological Mechanisms of Learning and memory. Memory systems of the brain, long term potentiation, and synaptic plasticity. Part III A. Salud Mental 2002; 25(3): 64-77.
Leff P, Retana I, Arias-Caballero A, Acevedo R, Salazar A, Martínez C, et al. Understanding the neurobiological mechanisms of learning and memory: cellular, molecular and gene regulation implicated in synaptic plasticity and long term potentiation. Part IV B. Salud Mental 2004; 27(3): 26-37.
Madani R, Hulo S, Toni N, Madani H, Steimer T, Muller D, et al. Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. EMBO J 1999; 18(11): 3007-12.
Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long-term potentiation in the hippocampus. Science 2006; 313(5790):1093-7.
Atherton JS. Learning and teaching: memory (on line) UK. http://www.learningandteaching.info/learning/memory.htm [2.05.2006].
Atkinson RC, Shiffrin RM. The control of short-term memory. Sci Am 1971; 225(2): 82-90.
Eichenbaum H. Neuroscience: how does the brain organize memories?. Science 1997; 77(5324): 330-2.
Carpenter MB. Neuroanatomía Fundamentos. Argentina: Editorial Médica Panamericana; 1994.
Corte FG, Ortiz X, Ostrosky-Solís F. Detección de deterioro cognitivo y demencia leve en población mexicana utilizando la escala breve del estado mental, la escala de Blessed y Neuropsi. Geragogia.net 2001. http://www.geragogia.net/editoriali/ scale.html [25.09.2005].
Ungerleider LG, Courtney SM, Haxby JV. A neural system for human visual working memory. Proc Natl Acad Sci USA. 1998; 95: 883-90.
Eichenbaum H. To Cortex: Thanks for the Memories. Neuron 1997; 19: 481-4.
Luria AR. Las funciones corticales superiores del hombre. La Habana: Orbe; 1977.
Eichenbaum H. Memory: old questions, new perspectives. Curr Biol 1997; 7: R53-R5.
Haines DE, Mihailoff GA, Bloedel JR. Cerebelo. In: Haines DE, ed. Principios de neurociencia. España. Elsevier Science 2003; 443-4.
Eichenbaum H. Declarative memory: insights from cognitive neurobiology. Annu Rev Psychol 1997; 48:547-72.
Arehart-Treichel J. Scientists identify brain area first affected by Alzheimer’s. Psychiatric News 2001;19; 36(20): 23. http:// pn.psychiatryonline.org/cgi/content/full/36/20/23 [10.10.2006].
Fleischman DA, Wilson RS, Gabrieli JDE, Schneider JA, Bienias JL. Implicit memory and Alzheimer’s disease neuropathology. Brain 2005; 128: 2006-15.
Petrella JR, Coleman RE, Doraiswamy PM. Neuroimaging and Early Diagnosis of Alzheimer Disease: A Look to the Future. Radiology 2003; 226(2): 315-36.
Gunten AV, Kövari E, Rivara CB, Bouras C, Hof PR, Giannakopoulos P. Stereological analysis of hippocampalAlzheimer’s disease pathology in the oldest-old: evidence for sparing of the entorhinal cortex and CA1 field. Exp Neurol 2005; 193:198-206.
Cowell RA, Bussey TJ and Saksida LM. Why does brain damage Impair Memory? A Connectionist Model of Object Recognition Memory in Perirhinal Cortex. J Neurosci 2006; 26(47): 12186- 97.
Farah MJ. Visual Agnosia. Disorders of object recognition and what they tell us about normal vision. The MIT press Massachusetts Institute of Technology Cambridge MA. 1995. http://www.magarinos.com.ar/farah2.htm [11.10.2006].
Ishai A, Ungerleider LG, Martin A, Haxby JV. The representation of objects in the human occipital and temporal cortex. J CognitNeurosci 2000; 12: S35-S51.
McCarthy RA, Warrington EK. Visual associative agnosia: a clinico-anatomical study of a single case. J Neurol Neurosurg Psychiatry 1986; 49(11): 1233-40.
McCarthy RA, Warrington EK. Evidence for modality-specific meaning systems in the brain. Nature 1988; 334: 428-30.
49 Farah MJ, Feinberg TE. Consciousness of perception after brain damage. Semin Neurol 1997; 17(2):145-52.
Warrington EK, McCarthy RA. Multiple meaning systems in the brain: a case for visual semantics. Neuropsychol 1994; 32(12): 1465-73.
Geschwind N. The problem of language in relation to the phylogenetic development of the brain. Sist Nerv 1965; 17(6): 411-9.
Kaplan-Solms K, Solms M. Estudios clínicos en neuropsicoanálisis. Introducción a la neuropsicología profunda. Colombia: FCE; 2005.
Ramírez-Bermúdez J. Paramnesia, mal que genera una suerte de “ilusiones de la memoria”. La Jornada. http:// www.jornada.unam.mx/2006/10/12/a03n1cie.php [12/10/ 2006].
Sacks O. El Hombre que confundió a su mujer con un sombrero. Ed. Oceano. ISBN:9706511504.
Ishai A, Ungerleider LG, Martin A, Schouten JL, Haxby JV. Distributed representation of objects in the human ventral visual pathway. Proc Natl Acad Sci USA 1999; 6: 9379-84.
McCarthy R, Warrington EK. Category specificity in an agrammatic patient: the relative impairment of verb retrieval and comprenhension. Neuropsychol 1985;23(6):709-27.
Warrington EK. The failure of language comprehension at sentence and phrasal levels in a patient who can speak normally. Cortex 2000; 36(3): 435-44.
Martin A, Wiggs CL, Ungerleider LG, Haxby JV. Neural correlates of category -specific knowledge. Nature 1996; 379: 649-52.
Craik FI, Morris LW, Morris RG, Loewen ER. Relations between source amnesia and frontal lobe functioning in older adults. Psychol Aging 1990: 5(1): 148-51.
Glisky EL, Rubin SR, Davidson PS. Source memory in older adults: an encoding or retrieval problem?. J Exp Psychol Learn Mem Cogn 2001; 27(5): 1131-46.
Kinjo H. A review of source memory research in the source monitoring paradigm. Shinrigaku Kenkyu 2001; 72(2): 134-50.
Schacter DL, Kaszniak AW, Kihlstrom JF, Valdiserri M. The relation between source memory and aging. Psychol Aging 1991; 6(4): 559-68.
Shimamura AP, Squire LR. A neuropsychological study of fact memory and source amnesia. J Exp Psychol Learn Mem Cogn1987; 13(3): 464-73.
64.Wegesin DJ, Friedman D, Varughese N, Stern Y. Age-related changes in source memory retrieval: an ERP replication and extension. Cog Brain Res 2002; 13: 323-38.
Fernández-Guardiola A, Solís H, Jurado JL, Contreras CM, Condés A, Gonzales-Estrada MT. Influence of the Cerebellum on Certain Types of Behavior. In: Sweet WH, Obrador S and Martin Rodríguez JG, eds. Neurosurgical treatment in Psychiatry and Epilepsy. Baltimore: Univ Park Press;1977;77-96.
Torras M, Portell I, Morgado I. La amígdala: implicaciones funcionales. Rev Neurol 2001; 3(5): 471-6.
Aguado L. Neuroscience of Pavlovian conditioning: a brief review. Span J Psychol 2003; (2): 155-67.
Epstein R, Skinner BF. Resurgence of responding after the cessation of response-independent reinforcement. Proc Natl Acad Sci USA 1980; 77(10): 6251-53.
Gutiérrez G. I.P. Pavlov: 100 años de investigación del aprendizaje asociativo. Univ Psychol [online] 2005; 4(2): 251- 5. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid= S1657-92672005000200012&lng=en&nrm=iso. ISSN1657- 9267. [18.10.2006]
Skinner BF. The Evolution of Behavior. J Exp Anal Behav 1984; 41(2): 217-21.
Gruart A. Fisiología del condicionamiento clásico del reflejo corneal. Actas de Fisiología 2000; 6: 7-37.
Pavlov IP. Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. By Ivan P. Pavlov (1927) Translated by G.V. Anrep (1927). An internet resources develop by Christopher D. Green York University, Toronto, Ontario. http://psychclassics.yorku.ca/Pavlov/index.htm [18.10.2006].
Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol 2006; 78:272-303.
Matsumara M, Sadato N, Kochiyama T, Nakamura S, Naito E, Matsunami K, et al. Role of the cerebellum in implicit motor skill learning: a PET study. Brain Res Bull 2004; 63: 471-83.
Cohen MR, Meissner GW, Schafer RJ, Raymond JL. Reversal of Motor Learning in the Vestibulo-Ocular Reflex in the Absence of Visual Input. Learn Mem 2004; 11: 559-65. http:// www.learnmem.org/cgi/reprint/11/5559?maxtoshow= &HITS=10&hits=10&RESULTFORMAT=1&andorexacttitle= a n d & a n d o r e x a c t t i t l e a b s = a n d & a n d o r e x a c t f u l l t e xt=and&searchid=1&FIRSTINDEX =0&sortspec=relevan ce&volume=11&firstpage=559&resourcetype=HWCIT [9.11.2006]
Ohyama T, Nores WL, Medina JF, Riusech FA, Mauk MD. Learning-induced plasticity in deep cerebellar nucleus. J Neurosci 2006; 26(49): 12656-63.
Hebb DO. The Organization of behavior: a neuropsychological theory. Lawrence Erlbaum Associates; 2002; ISBN:0805843000.
Dudai Y. The neurobiology of consolidations, or how stable is the engram?. Annu Rev Psychol 2004; 55: 51-86.
Müller U. Prolonged Activation of cAMP -Dependent Protein Kinase during Conditioning Induces Long-Term Memory in Honeybees. Neuron 2000; 27: 159-68.
Pedreira ME, Pérez-Cuesta LM, Maldonado H. Reactivation and reconsolidation of long-term memory in the crab chasmagnathus: protein synthesis requirement and mediation by NMDA-Type glutamatergic receptor. J Neurosci 2002; 22(18): 8305-11.