2010, Número 1
<< Anterior Siguiente >>
Neumol Cir Torax 2010; 69 (1)
Importancia del intercambiador Na+/Ca2+ en la regulación del Ca2+ intracelular en el músculo liso de las vías aéreas
Cóbar BL, Montaño RLM, Cruz VJE, Flores SE
Idioma: Español
Referencias bibliográficas: 54
Paginas: 39-45
Archivo PDF: 174.79 Kb.
RESUMEN
El ion Ca
2+ cumple múltiples funciones celulares. En el músculo liso de las vías aéreas participa de forma importante en la contracción. Los estímulos hormonales y neurogénicos generan incrementos en la concentración de Ca
2+ intracelular ([Ca
2+]i); la fuente para el incremento de Ca
2+ es intracitoplasmática y extracitoplasmática. Para lograr este aumento de la [Ca
2+]i es necesaria la participación de proteínas membranales y del retículo sarcoplásmico. Dentro de estas proteínas se encuentra el intercambiador Na
+/Ca
2+ (NCX) que se localiza en la membrana plasmática y actúa como un cotransportador de intercambio iónico. Su función principal es sacar un Ca
2+ del citoplasma al espacio extracelular e introducir tres Na
+ del espacio extracelular al citoplasma, sin gasto de ATP, y contribuir así a mantener los niveles basales de [Ca
2+]i. Sin embargo, cuando diferentes agonistas broncoconstrictores activan canales catiónicos inespecíficos y éstos incrementan las concentraciones intracelulares de Ca
2+ y Na
+, este último ion activa la llamada fase reversa del NCX (NCX
REV), invirtiéndose entonces su función, es decir, ahora introduce Ca
2+ y saca Na
+ al espacio extracelular. Este artículo refiere algunos indicios que apuntan a que la inhibición del NCX
REV tendría relevancia como terapia adyuvante en pacientes asmáticos y muestra, por primera vez, evidencias experimentales de la funcionalidad del NCX
REV en el músculo liso de las vías aéreas del humano.
REFERENCIAS (EN ESTE ARTÍCULO)
Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003;4:517-529.
Dettbarn C, Györke S, Palade P. Many agonists induce “quantal” Ca2+ release or adaptive behavior in muscle ryanodine receptors. Mol Pharmacol 1994;46: 502-507.
Horowitz A, Menice CB, Laporte R, Morgan KG. Mechanisms of smooth muscle contraction. Physiol Rev 1996;76:967-1003.
Marín J, Encabo A, Briones A, García-Cohen EC, Alonso MJ. Mechanisms involved in the cellular calcium homeostasis in vascular smooth muscle: calcium pumps. Life Sci 1999;64:279-303.
Carbajal V, Vargas MH, Flores-Soto E, Martínez-Cordero E, Bazán-Perkins B, Montaño LM. LTD4 induces hyperresponsiveness to histamine in bovine airway smooth muscle: role of SR-ATPase Ca2+ pump and tyrosine kinase. Am J Physiol Lung Cell Mol Physiol 2005;288:84-92.
Montaño LM, Bazán-Perkins B. Resting calcium influx in airway smooth muscle. Can J Physiol Pharmacol 2005;83:717-723.
Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature 1994;372:231-236.
Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 2003;83:1325-1358.
Sieck GC, Kannan MS, Prakash YS. Heterogeneity in dynamic regulation of intracellular calcium in airway smooth muscle cells. Can J Physiol Pharmacol 1997;75:878-888.
Clapham DE. Calcium signalling. Cell 1995;80:259-268.
Edes I, Kranias EG. Ca2+-ATPases/pumps. In: Cell Physiology Source Book: Section II Transport physiology, pumps and exchangers. 2nd ed. New York: Academic press; 1998. p.225-236.
Berridge MJ. Inositol triphosphate and calcium signalling. Nature 1993;361: 315-325.
Challiss RA, Adams D, Mistry R, Boyle JP. Second messenger and ionic modulation of agonist-stimulated phosphoinositide turnover in airway smooth muscle. Biochem Soc Trans 1993;21:1138-1145.
Iino M. Calcium-induced calcium release mechanism in guinea pig taenia caeci. J Gen Physiol 1989;94:363-383.
Iino M. Calcium release mechanisms in smooth muscle. Jpn J Pharmacol 1990;54:345-354.
Kotlikoff MI. Calcium currents in isolated canine airway smooth muscle cells. Am J Physiol 1988;254(6 Pt 1):C793-C801.
Bazán-Perkins B, Flores-Soto E, Barajas-Lopez C, Montaño LM. Role of sarcoplasmic reticulum Ca2+ content in Ca2+ entry of bovine airway smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol 2003;368:277-283.
Janssen LJ, Walters DK, Wattie J. Regulation of [Ca2+]i in canine airway smooth muscle by Ca2+ - ATPase and Na+/Ca2+ exchange mechanisms. Am J Physiol 1997;273(2 Pt 1):L322-L330.
Floyd R, Wray S. Calcium transporters and signalling in smooth muscles. Cell Calcium 2007;42:467-476.
Philipson KD, Nicoll DA. Sodium-calcium exchange: a molecular perspective. Annu Rev Physiol 2000;62:111-133.
Ringer S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the Heart. J Physiol 1883;4:29-42.
Daly Ide B, Clark AJ. The action of ions upon the frog´s heart. J Physiol 1921; 54:367-383.
Wilbrandt W, Koller H. Die calcium wirkung am froschherzen als funktion des ionengleichgewichts zwischen Zelmembran und umgebung. Helv Physiol Pharmacol Acta 1948;6:208-221.
Reuter H, Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol 1968;195:451-460.
Baker PF, Blaustein MP, Hodgkin AL, Steinhardt RA. The influence of calcium on sodium efflux in squid axons. J Physiol 1969;200:431-458.
Glitsch HG, Reuter H, Scholz H. The effect of the internal sodium concentration on calcium fluxes in isolated guinea-pig auricles. J Physiol 1970; 209:25-43.
DiPolo R, Beaugé L. Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions. Physiol Rev 2006;86:155-203.
Pitt A, Knox AJ. Molecular characterization of the human airway smooth muscle Na+/Ca2+ exchanger. Am J Respir Cell Mol Biol 1996;15:726-730.
Mejía-Elizondo R, Espinosa-Tanguma R, Saavedra-Alanis VM. Molecular identification of the NCX isoform expressed in tracheal smooth muscle of guinea pig. Ann N Y Acad Sci 2002;976:73-76.
Ottolia M, John S, Xie Y, Ren X, Philipson KD. Shedding light on the Na+/Ca2+ exchanger: Ann N Y Acad Sci 2007;1099:78-85.
Díaz HO. El ion calcio: su regulación y función en la célula b pancreática. Rev Cubana Endocrinol 2003;14:1-24.
Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiol Rev 1999;79:763-854.
Matsuda T, Takuma K, Baba A. Na+/Ca2+ exchanger: physiology and pharmacology. Jpn J Pharmacol 1997;74:1-20.
Watanabe Y, Koide Y, Kimura J. Topics on the Na+/Ca2+ exchanger: pharmacological characterization of Na+/Ca2+ exchanger inhibitors. J Pharmacol Sci 2006;102:7-16.
Uetani T, Matsubara T, Nomura H, Murohara T, Nakayama S. Ca2+-dependent modulation of intracellular Mg2+ concentration with amiloride and KB-R7943 in pig carotid artery. J Biol Chem 2003;278:47491-47497.
Kleyman TR, Cragoe EJ Jr. Amiloride and its analogs as tools in the study of ion transport. J Membr Biol 1988;105:1-21.
Iwamoto T, Watano T, Shigekawa M. A novel isothiourea derivative selectively inhibits the reverse mode of Na+/Ca2+ exchange in cells expressing NCX1. J Biol Chem 1996;271:22391-22397.
Watano T, Kimura J, Morita T, Nakanishi H. A novel antagonist, No. 7943, of the Na+/Ca2+ exchange current in guinea-pig cardiac ventricular cells. Br J Pharmacol 1996;119:555-563.
Iwamoto T, Kita S. Development and application of Na+/Ca2+ exchange inhibitors. Mol Cell Biochem 2004;259:157-161.
Matsuda T, Arakawa N, Takuma K, et ál. SEA0400, a novel and selective inhibitor of the Na+-Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J Pharmacol Exp Ther 2001;298:249-256.
Tanaka H, Nishimaru K, Aikawa T, Hirayama W, Tanaka Y, Shigenobu K. Effect of SEA0400, a novel inhibitor of sodium-calcium exchanger, on myocardial ionic currents. Br J Pharmacol 2002;135:1096-1100.
Beaugé L, DiPolo R. SEA-0400, a potent inhibitor of the Na+/Ca2+ exchanger, as a tool to study exchanger ionic and metabolic regulation. Am J Physiol Cell Physiol 2005;288:C1374-C1380.
Kita S, Iwamoto T. Inhibitory mechanism of SN-6, a novel benzyloxyphenyl Na+/Ca2+ exchange inhibitor. Ann N Y Acad Sci 2007;1099:529-533.
Niggli E, Lederer WJ. Molecular operations of the sodium-calcium exchanger revealed by conformation currents. Nature 1991;349:621-624.
Bers DM. Species differences and the role of sodium-calcium exchange in cardiac muscle relaxation. Ann N Y Acad Sci 1991;639:375-385.
Fabiato A. Stimulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 1985;85:291-320.
Lederer WJ, Cannell MB, Cohen NM, Berlin JR. Excitation-contraction coupling in heart muscle. Mol Cell Biochem 1989;89:115-119.
Janssen LJ, Walters DK, Wattie J. Regulation of [Ca2+]i in canine airway smooth muscle by Ca2+-ATPase and Na+/Ca2+ exchange mechanisms. Am J Physiol 1997;273:L322-L330.
Hirsh AJ, Benishin CG, Jones RL, Pang PK, Man SF. Calcium mobilization and isometric tension in bovine tracheal smooth muscle: effects of salbutamol and histamine. Cell Calcium 1996;19:73-81.
Mustafa SM, Pilcher CW, Williams KI. Cooling-induced bronchoconstriction: the role of ion-pumps and ion-carrier systems. Pharmacol Res 1999;39:125-36.
Hirota S, Pertens E, Janssen LJ. The reverse mode of the Na+/Ca2+ exchanger provides a source of Ca2+ for store refilling following agonist-induced Ca2+ mobilization. Am J Physiol Lung Cell Mol Physiol 2007;292:L438-L447.
Hirota S, Janssen LJ. Store-refilling involves both L-type calcium channels and reverse-mode sodium-calcium exchange in airway smooth muscle. Eur Respir J 2007;30:269-278.
Algara-Suárez P, Romero-Méndez C, Chrones T, et ál. Functional coupling between the Na+/Ca2+ exchanger and nonselective cation channels during histamine stimulation in guinea pig tracheal smooth muscle. Am J Physiol Lung Cell Mol Physiol 2007;293:L191-L198.
Dai JM, Kuo KH, Leo JM, Paré PD, van Breemen C, Lee CH. Acetylcholine-induced asynchronous calcium waves in intact human bronchial muscle bundle. Am J Respir Cell Mol Biol 2007;36:600-608.