2009, Número 3
<< Anterior Siguiente >>
Med Int Mex 2009; 25 (3)
Mitos y realidad de la hemoglobina glucosilada
Pérez PI, Rodríguez WFL, Díaz Greene EJ, Cabrera JR
Idioma: Español
Referencias bibliográficas: 50
Paginas: 202-209
Archivo PDF: 282.10 Kb.
RESUMEN
La diabetes mellitus es un padecimiento que ha tenido grandes repercusiones en la salud pública; en la actualidad es la principal causa de morbilidad y mortalidad en la República Mexicana. A lo largo de los años, diferentes estudios han mostrado la asociación entre el descontrol glucémico y las complicaciones crónicas (microvasculares o macrovasculares, o ambas). La determinación de la glucosilación no enzimática de las proteínas sanguíneas establecida mediante las concentraciones de hemoglobina glucosilada ha demostrado ser un parámetro objetivo del control glucémico a través de un tiempo determinado. Existe un consenso internacional acerca de la medición y la interpretación de la hemoglobina glucosilada y sus resultados pueden variar en función de ciertas condiciones clínicas de los pacientes. No hay un valor único de hemoglobina glucosilada que sea aplicable a toda la población de diabéticos, por lo que la meta será llevar a los pacientes a concentraciones de glucosa lo más cercanas a la normalidad. Esto se reflejará en concentraciones de hemoglobina glucosilada y, lo más importante, en complicaciones crónicas asociadas a diabetes mellitus.
REFERENCIAS (EN ESTE ARTÍCULO)
Nathan DM. Initial Management of Glycemia in Type 2 Diabetes Mellitus. N England J Med 1976;295:417-20.
Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:1047-53.
Modificación a la Norma Oficial Mexicana (NOM-015-ssa2-1994) para la Prevención, Tratamiento y Control de la Diabetes Mellitus en la Atención Primaria para quedar como Norma Oficial Mexicana (NOM-015-ssa2-1994) para la Prevención, Tratamiento y Control de la Diabetes.
Secretaría de Salud. Estadísticas de mortalidad en México: muertes registradas en el año 2000. Salud Pública Mex 2002;44:266-82.
Terrés Speziale A. Confiabilidad y aplicabilidad de los nuevos criterios internacionales para el diagnóstico de diabetes mellitus. Rev Mex Patol Clin 2002;49(4):212-20.
The Diabetic Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Eng J Med 1993;329:977-86.
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837-53.
Huisman T, Dozy A. Studies on the heterogeneity of hemoglobin. V. Binding of hemoglobin with oxidized glutathione. J Lab Clin Med 1962;60:302-19.
Rahbar S. An abnormal hemoglobin in red cells of diabetes. Clin Chim Acta 1968;22:296-8.
Schnek A, Schroeder W. The relation between the minor components of whole normal human adult hemoglobin as isolated by chromatography and starch block electrophoresis. J Am Chem Soc 1961;83:1472-8.
Rahbar S, Blumenfeld O, Ranney H. Studies of an unusual hemoglobin in patients with diabetes mellitus. Biochem Biophys Res Commun 1969;36:838-43.
Schroter W. Glycosylated hemoglobins and diabetes mellitus. Eur J Pediatr 1980;134:95-8.
Bunn HF, Haney DN, Kamin S, Gabbay KH, Gallop PM. The biosynthesis of human hemoglobin A1c. Slow glycosylation of hemoglobin in vivo. J Clin Invest 1976;57:1652-9.
Fitzgibbons JF, Koler RD, Jones RT. Red-cell age-related changes of hemoglobins AIa+b and AIc in normal and diabetic subjects. J Clin Invest 1976; 41:820-4.
Goldstein DE, Little RR, Wiedmeyer HM, et al. Glycated hemoglobin: methodologies and clinical applications. Clin Chem 1986;32(10 Suppl):B64-70.
John WG, Mosca A, Weykamp C, Goodall I. HbA1c Standardisation: History, Science and Politics. Clin Biochem Rev 2007;28:163-68.
John WG. Haemoglobin A1c reference method. Scand J Clin Lab Invest 2006;66:1-4.
Little RR, Rohlfing CL, Wiedmeyer HM, Myers GL, et al. The National Glycohemoglobin Standardization Program (NGSP): a five-year progress report. Clin Chem 2001;47:1985-92.
Shima K, Endo J, Oimomi M, Omori Y, Katayama Y, Kanazawa Y, et al. Interlaboratory differences in GHb measurement in Japan, the fifth report of the GHb standardization committee, the Japan Diabetes Society. J Japan Diab Soc 1998; 41:317-23.
Sacks DB; ADA/EASD/IDF Working Group of the HbA1c Assay. Global Harmonization of Hemoglobin A1c. Clin Chem 2005;51:681-3.
Ohkubo Y, Kishikawa H, Araki E, Miyata T, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995;28:103-17.
Abraira C, Colwell J, Nuttall F, Sawin CT, et al. Cardiovascular events and correlates in the Veterans Affairs Diabetes Feasibility Trial: Veterans Affairs Cooperative Study on Glycemic Control and Complications in Type II Diabetes. Arch Intern Med 1997;157:181-88.
The Diabetes Control and Complications Trial Research Group: The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the Diabetes Control and Complications Trial. Diabetes 1995;44:968-83.
The Diabetes Control and Complications Trial Research Group: The absence of a glycemic threshold for the development of long-term complications: the perspective of the Diabetes Control and Complications Trial. Diabetes 1996;45:1289-98.
The DCCT Research Group. Effect of intensive diabetes management on macrovascular events and risk factors in the Diabetes Control and Complications Trial. Am J Cardiol 1995;75:894-903.
The DCCT/EDIC Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005;353:2643-53.
Kilpatrick ES, Rigby AS, Atkin SL. Mean blood glucose compared to HbA1c in the predicition of cardiovascular disease in type 1 diabetes. Diabetologia 2008;51:365-71.
UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 1998;317:703-13.
Buse JB, Bigger JT, Byington RP, et al. Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial: design and methods. Am J Cardiol 2007;99:21i–33i.
Study rationale and design of ADVANCE: action in diabetes and vascular disease—preterax and diamicron MR controlled evaluation. Diabetologia 2001;44:1118-20.
Brownlee M, Hirsch IB. Glycemic variability: a hemoglobin A1c–independent risk factor for diabetic complications. JAMA 2006;295:1707-8.
McCarter RJ, Hempe JM, Chalew SA. Mean blood glucose and biological variation have greater influence on HbA1c levels than glucose instability: an analysis of data from the Diabetes Control and Complications Trial. Diabetes Care 2006;29:352-55.
Kilpatrick ES, Rigby AS, Atkin SL: The effect of glucose variability on the risk of microvascular complications in type 1 diabetes. Diabetes Care 2006; 29:1486–1490
Kilpatrick ES, Rigby AS, Atkin SL: Mean blood glucose compared with HbA1c in the prediction of cardiovascular disease type 1. Diabetologia 2008; 51:365–371
Lachin JM, Genuth S, Nathan diabetes mellitus, Zinman B, Rutledge BN, DCCT/EDIC Research Group. Effect of Glycemic Exposure on the Risk of Microvascular Complications in the Diabetes Control and Complications Trial-Revisited. Diabetes 2008; 57: 995 – 1001
Kilpatrick ES, Rigby AS, Atkin SL. A1C variability and the risk of microvascular complications in type 1 diabetes: data from the Diabetes Control and Complications Trial. Diabetes Care 2008;31:2198–2202
Prince, KT; Costacou, T; Orchard, TJ. Glycemia and cardiovascular risk in type 1 diabetes: reconciling conflicting results. Diabetes. 2006;55 1:A1
Aleyassine H. Glycosylation of hemoglobin S and hemoglobin C. Clin Chem 1980; 26:526–7.
Lee ST, Weykamp CW, Lee YW, Kim JW, Ki CS. Effects of 7 hemoglobin variants on the measurement of glycohemoglobin by 14 analytical methods. Clin Chem 2007;53:2202–5.
Little RR, Tennill AL, Rohlfing C, Wiedm-eyer HM, Khanna R, Goel S, et al. Can glucohemoglobin be used to assess glycemic control in patients with chronic renal failure? Clin Chem 2002;48(5):784-786.
Weykamp CW, Penders TJ, Siebelder CW, Muskiet FA, van der Slik W. Interference of carbamylated and acetylated hemoglobins in assays glycohemoglobin by HPLC, electrophoresis, affinity chromatography, and enzyme immunoassay. Clin Chem 1993;39:138–42.
Brooks AP, Metcalfe J, Day JL, Edwards MS. Iron deficiency and glycosylated haemoglobin A. Lancet 1980;2:141
Panzer S, Kronik G, Lechner K, Bettelheim P, Neumann E, Dudczak R. Glycosylated hemoglobins (GHb): an index of red cell survival. Blood. 1982;59:1348-50.
American Diabetes Association. Screening for type 2 diabetes. Diabetes Care. 2004;27(suppl 1):S11-S14
American Diabetes Association. Standards of medical care in diabetes-2008. Diabetes Care. 2008;31 Suppl 1:S12-54.
Bennett CM, Guo M, Dharmage SC. HbA1c as a screening tool for detection of type 2 diabetes: a systematic review. Diabet Med 2007; 24:333–43.
Perry RC, Shankar RR, Fineberg N, McGill J, Baron AD; Early Diabetes Intervention Program (EDIP). HbA1c measurement improves the detection of type 2 diabetes in high-risk individuals with nondiagnostic levels of fasting plasma glucose: The Early Diabetes Intervention Program (EDIP). Diabetes Care 2001; 24:465–71.
Saudek CD, Herman WH, Sacks DB, Bergenstal RM, Edelman D, Davidson MB. A New Look at Screening and Diagnosing Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2008; 93: 2447-2453.
The European Diabetes Policy Group. A desktop guide to type 1 (insulindependent) diabetes mellitus. Diabet Med 1999;16:253–66.
The European Diabetes Policy Group. A desktop guide to type 2 diabetes mellitus. Diabet Med 1999;16:716–30.