2009, Número 4
<< Anterior Siguiente >>
Rev Inst Nal Enf Resp Mex 2009; 22 (4)
Receptores de la inmunidad innata en procesos infecciosos pulmonares
Juárez CE, López GJS, Torres RM, Sada DE
Idioma: Español
Referencias bibliográficas: 69
Paginas: 366-378
Archivo PDF: 268.43 Kb.
RESUMEN
La mucosa del aparato respiratorio es una de las superficies tisulares más expuestas al ambiente externo, por lo que el sistema inmune pulmonar debe proteger al organismo de la presencia de material potencialmente patogénico. Las células responsables de la inmunidad local incluyen a los macrófagos alveolares, que realizan funciones de fagocitosis y quimiotaxis y generan múltiples mecanismos bactericidas, y a las células epiteliales, que también contribuyen a la respuesta innata con producción de quimiocinas, citocinas y péptidos antimicrobianos. Las células de la defensa pulmonar cuentan con un repertorio de receptores para llevar a cabo el reconocimiento de patógenos, entre ellos los TLR, NLR, RLH y algunos otros, los cuales señalizan en respuesta al reconocimiento de patógenos para generar la respuesta inflamatoria y los mecanismos antimicrobianos necesarios para erradicar la infección. El conocimiento obtenido con relación a las interacciones entre los receptores de la inmunidad innata y sus ligandos naturales y sintéticos, así como acerca de la inducción específica de genes por los distintos mecanismos de señalización innatos y la participación de las células locales, permite hacer propuestas sobre su manipulación a fin de regular el proceso inflamatorio que, en ocasiones, contribuye al daño pulmonar.
REFERENCIAS (EN ESTE ARTÍCULO)
von Garnier C, Nicod LP. Immunology taught by lung dendritic cells. Swiss Med Wkly 2009;139:186-192.
Gordon SB, Read RC. Macrophage defences against respiratory tract infections. Br Med Bull 2002;61:45-61.
Sibille Y, Reynolds HY. Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am Rev Respir Dis 1990;141:471-501.
Raz E. Organ-specific regulation of innate immunity. Nat Immunol 2007;8:3-4.
Castellaneta A, Sumpter TL, Chen L, Tokita D, Thomson AW. NOD2 ligation subverts IFN-alpha production by liver plasmacytoid dendritic cells and inhibits their T cell allostimulatory activity via B7-H1 up-regulation. J Immunol 2009;183:6922-6932.
Shen R, Richter HE, Clements RH, et ál. Macrophages in vaginal but not intestinal mucosa are monocyte-like and permissive to human immunodeficiency virus type 1 Infection. J Virol 2009:83:3258-3267.
Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 2002;168:554-561.
Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 2000;68:7010-7017.
Pryshchep O, Ma-Krupa W, Younge BR, Goronzy JJ, Weyand CM. Vessel-specific Toll-like receptor profiles in human medium and large arteries. Circulation 2008;118:1276-1284.
Gersuk GM, Underhill DM, Zhu L, Marr KA. Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus cellular states. J Immunol 2006;176:3717-3724.
Bérubé J, Bourdon C, Yao Y, Rousseau S. Distinct intracellular signaling pathways control the synthesis of IL-8 and RANTES in TLR1/TLR2, TLR3 or NOD1 activated human airway epithelial cells. Cell Signal 2009;21:448-456.
Fritz JH, Ferrero RL, Philpott DJ, Girardin SE. Nod-like proteins in immunity, inflammation and disease. Nat Immunol 2006;7:1250-1257.
O’Neill LA. How Toll-like receptors signal: what we know and what we don’t know. Curr Opin Immunol;2006;18:3-9.
Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S. Macrophage receptors and immune recognition. Annu Rev Immunol 2005;23:901-944.
Holt PG, Strickland DH, Wikström ME, Jahnsen FL. Regulation of immunological homeostasis in the respiratory tract. Nat Rev Immunol 2008;8:142-152.
Zani BG, Kojima K, Vacanti CA, Edelman ER. Tissue-engineered endothelial and epithelial implants differentially and synergistically regulate airway repair. Proc Natl Acad Sci USA 2008;105:7046-7051.
Lo B, Hansen S, Evans K, Heath JK, Wright JR. Alveolar epithelial type II cells induce T cell tolerance to specific antigen. J Immunol 2008;180:881-888.
Holt PG, Sedgwick JD. Suppression of IgE responses following inhalation of antigen: a natural homeostatic mechanism which limits sensitization to aeroallergens. Immunol Today 1987;8:14-15.
Rivas-Santiago B, Schwander SK, Sarabia C, et ál. Human {beta}-defensin 2 is expressed and associated with Mycobacterium tuberculosis during infection of human alveolar epithelial cells. Infect Immun 2005;73:4505-4511.
Bohnenkamp HR, Papazisis KT, Burchell JM, Taylor-Papadimitriou J. Synergism of Toll-like receptor-induced interleukin-12p70 secretion by monocyte-derived dendritic cells is mediated through p38 MAPK and lowers the threshold of T-helper cell type 1 responses. Cell Immunol 2007;247:72-84.
Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 2005;28:886-892.
Roach JC, Glusman G, Rowen L, et ál. The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci USA 2005;102:9577-9582.
Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001;2:675-680.
Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004;5:987-995.
Sabroe I, Parker LC, Dower SK, Whyte MK. The role of TLR activation in inflammation. J Pathol 2008;214:126-135.
Yanagi S, Ashitani J, Ishimoto H, et ál. Isolation of human beta-defensin-4 in lung tissue and its increase in lower respiratory tract infection. Respir Res 2005;6:130.
Archer KA, Roy CR. MyD88-dependent responses involving toll-like receptor 2 are important for protection and clearance of Legionella pneumophila in a mouse model of Legionnaires’disease. Infect Immun 2006;74:3325-3333.
Fremond CM, Yeremeev V, Nicolle DM, Jacobs M, Quesniaux VF, Ryffel B. Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J Clin Invest 2004;114:1790-1799.
Echchannaoui H, Frei K, Schnell C, Leib SL, Zimmerli W, Landmann R. Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J Infect Dis 2002;186:798-806.
30.Malley R, Henneke P, Morse SC, et ál. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci USA 2003;100:1966-1971.
Shi S, Blumenthal A, Hickey CM, Gandotra S, Levy D, Ehrt S. Expression of many immunologically important genes in Mycobacterium tuberculosis-infected macrophages is independent of both TLR2 and TLR4 but dependent on IFN-alphabeta receptor and STAT1. J Immunol 2005:175:3318-3328.
Kang MJ, Lee CG, Lee JY, et ál. Cigarette smoke selectively enhances viral PAMP- and virus-induced pulmonary innate immune and remodeling responses in mice. J Clin Invest 2008;118:2771-2784.
Tal G, Mandelberg A, Dalal I, et ál. Association between common Toll-like receptor 4 mutations and severe respiratory syncytial virus disease. J Infect Dis 2004;189:2057-2063.
Awomoyi AA, Rallabhandi P, Pollin TI, et ál. Association of TLR4 polymorphisms with symptomatic respiratory syncytial virus infection in high-risk infants and young children. J Immunol 2007;179:3177-3177.
Travassos LH, Girardin SE, Philpott DJ, et ál. Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep 2004;5:1000-1006.
Zhang X, Mosser DM. Macrophage activation by endogenous danger signals. J Pathol 2008;214:161-178.
Strober W, Murray PJ, Kitani A, Watanabe T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol 2006;6:9-19.
Inohara N, Chamaillard M, McDonald C, Núñez G. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 2005;74:355-383.
Vinzing M, Eitel J, Lippmann J, et ál. NAIP and Ipaf control Legionella pneumophila replication in humanc cells. J Immunol 2008;180:6808-6815.
Ratner AJ, Aguilar JL, Shchepetov M, Lysenko ES, Weiser JN. Nod1 mediates cytoplasmic sensing of combinations of extracellular bacteria. Cell Microbiol 2007;9:1343-1351.
Divangahi M, Mostowy S, Coulombe F, et ál. NOD2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity. J Immunol 2008; 181:7157-7165.
Gandotra S, Jang S, Murray PJ, Salgame P, Ehrt S. Nucleotide-binding oligomerization domain protein 2-deficient mice control Infection with Mycobacterium tuberculosis. Infect Immun 2007;75:5127-5134.
Wieland CW, Florquin S, Pater JM, Weijer S, van der Poll T. Interleukin-1 contributes to an effective clearance of Mycobacterium kansasii from the respiratory tract. Microbes Infect 2006;8:2409-2413.
Juffermans NP, Florquin S, Camoglio L, et ál. Interleukin-1 signaling is essential for host defense during murine pulmonary tuberculosis. J Infect Dis 2000; 182:902-908.
Pettis RJ, Hall I, Costa D, Hickey AJ. Aerosol delivery of muramyl dipeptide to rodent lungs. AAPS PharmSci 2000;2:E25.
Uehara A, Hirabayashi Y, Takada H. Antibodies to proteinase 3 prime human oral, lung, and kidney epithelial cells to secrete proinflammatory cytokines upon stimulation with agonists to various Toll-like receptors, NOD1, and NOD2. Clin Vaccine Immunol 2008;15: 1060-1066.
Voss E, Wehkamp J, Wehkamp K, Stange EF, Schröder JM, Harder J. NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem 2006;281:2005-2011.
Pippig DA, Hellmuth JC, Cui S, et ál. The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA. Nucleic Acids Res 2009;37:2014-2025.
Lei Y, Moore CB, Liesman RM, et ál. MAVS-mediated apoptosis and its inhibition by viral proteins. PLoS One 2009;4:e5466.
Bhoj VG, Sun Q, Bhoj EJ, et ál. MAVS and MyD88 are essential for innate immunity but not cytotoxic T lymphocyte response against respiratory syncytial virus. Proc Natl Acad Sci USA 2008;105:14046-14051.
Kobasa D, Jones SM, Shinya K, et ál. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 2007;445:319-323.
Koyama S, Ishii KJ, Kumar H, et ál. Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J Immunol 2007;179:4711-4720.
Siu KL, Kok KH, Ng MH, et ál. Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKK epsilon complex. J Biol Chem 2009;284:16202-16209.
Geijtenbeek TB, van Vliet SJ, Engering A, ‘t Hart BA, van Kooyk Y. Self and nonself recognition by C-type lectins on dendritic cells. Annu Rev Immunol 2004;22:33-54.
Valera I, Fernández N, Trinidad AG, et ál. Costimulation of dectin-1 and DC-SIGN triggers the arachidonic acid cascade in human monocyte-derived dendritic cells. J Immunol 2008;180:5727-5736.
Hernanz-Falcón P, Joffre O, Williams DL, Reis e Sousa C. Internalization of Dectin-1 terminates induction of inflammatory responses. Eur J Immunol 2009;39:507-513.
Hohl TM, Van Epps HL, Rivera A, et ál. Aspergillus fumigatus triggers inflammatory responses by stage-specific beta-glucan display. PLoS Pathog 2005;1:e30.
Saijo S, Fujikado N, Furuta T, et ál. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol 2007;8:39-46.
Hamvas RM, Johnson M, Vlieger AM, et ál. Role for mannose binding lectin in the prevention of Mycoplasma infection. Infect Immun 2005;73:5238-5240.
Eisen DP, Minchinton RM. Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin Infect Dis 2003;37:1496-1505.
Tailleux L, Pham-Thi N, Bergeron-Lafaurie A, et ál. DC-SIGN induction in alveolar macrophages defines privileged target host cells for mycobacteria in patients with tuberculosis. PLoS Med 2005;2:e381.
Kang PB, Azad AK, Torrelles JB, et ál. The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med 2005;202:987-999.
Enioutina EY, Bareyan D, Daynes RA. TLR ligands that stimulate the metabolism of vitamin D3 in activated murine dendritic cells can function as effective mucosal adjuvants to subcutaneously administered vaccines. Vaccine 2008;26:601-613.
Martinez-Sobrido L, Gitiban N, Fernandez-Sesma A, et ál. Protection against respiratory syncytial virus by a recombinant Newcastle disease virus vector. J Virol 2006;80:1130-1139.
Chedid LA, Parant MA, Audibert FM, et ál. Biological activity of a new synthetic muramyl peptide adjuvant devoid of pyrogenicity. Infect Immun 1982;35:417-424.
Kim YG, Park JH, Shaw MH, Franchi L, Inohara N, Núñez G. The cytosolic sensors Nod1 and Nod2 are critical for bacterial recognition and host defense after exposure to Toll-like receptor ligands. Immunity 2008;28:246-257.
Sadikot RT, Zeng H, Joo M, et ál. Targeted immunomodulation of the NF-kappaB pathway in airway epithelium impacts host defense against Pseudomonas aeruginosa. J Immunol 2006;176:4923-4930.
Hernanz-Falcón P, Joffre O, Williams DL, Reis e Sousa C. Internalization of Dectin-1 terminates induction of inflammatory responses. Eur J Immunol 2009;39:507-513.
Didierlaurent A, Goulding J, Patel S, et ál. Sustained desensitization to bacterial Toll-like receptor ligands after resolution of respiratory influenza infection. J Exp Med 2008;205:323-329.