2003, Número 4
<< Anterior Siguiente >>
Rev Mex Patol Clin Med Lab 2003; 50 (4)
Aplicación intranasal de vacunas Estado actual y perspectivas
Batista DA
Idioma: Español
Referencias bibliográficas: 56
Paginas: 199-208
Archivo PDF: 90.62 Kb.
RESUMEN
En los últimos años ha habido un avance significativo en la comprensión de los mecanismos inmunológicos involucrados en la protección en las mucosas. Particularmente se ha definido el papel del tejido linfoide asociado a la nasofaringe (TLAN) como un importante sitio inductor de respuesta inmune. Esto ha abierto grandes posibilidades al desarrollo de vacunas para ser aplicadas por esta vía, sobre todo teniendo en cuenta que ésta es una puerta de entrada de muchos gérmenes patógenos y la necesidad de buscar vías alternas más económicas, prácticas e incluso eficientes que la parenteral para las inmunizaciones. En el presente trabajo se revisa el estado actual de la temática, focalizando la atención en los mecanismos de inducción inmune, así como en las estrategias actuales para lograr una mejor transportación de los antígenos vacunales y potenciación de la respuesta inmune en los sitios inductores de la nasofaringe, mediante el uso de nuevas generaciones de vehículos y adyuvantes que están en desarrollo.
REFERENCIAS (EN ESTE ARTÍCULO)
Bienenstock J. The nature of immunity at mucosal surfaces – a brief review. In: Donachie W, Griffiths E, Stephen J. (eds) Bacterial infections of the respiratory and gastrointestinal mucosa. Oxford: IRL Press, 1988: 9-18.
Kuper CF, Koomstra PJ, Hameleers DHM, Biewenga J, Spit BJ et al. The role of nasopharyngeal lymphoid tissue. Immunol Today 1992; 13: 219-224.
Almeida AJ, Alpar HO. Nasal delivery of vaccines. J Drug Targ 1996; 3: 455-467.
Hiroi T, Kiyano H. NALT immune system for the development of mucosal vaccine. 10th International Congress of Immunology. Monduzi Ed, 1998: 1565-1571.
Holmgrem J. European Commision CUST/STD Initiative Report of the Expert Panel VI. Concerted efforts in the field of mucosal immunology: 644-664.
Bergquist CH, Johansson EL, Lagergard T, Holmgren J, Rudin A. Intranasal vaccination of humans with recombinant cholera toxin B subunit induces systemic and local antibody responses in the upper respiratory tract and the vagina. Infect Immun 1997; 65 (7): 2676-2684.
Jertborn M, Nordstron I, Kilander C, Czerkinsky C, Holmgrem J. Local and systemic immune responses to rectal administration of recombinant cholera toxin B subunit in humans. Infect Immun 2001; 69 (6): 4125-4128.
Czerkinsky C, Holmgren, J. Induction of immunity at mucosal surfaces: From vaccine development to specific immunotherapy. Dyn Nutr Res 1995; 4: 161-173.
Quiding M, Lakew M, Granstrom G, Nordstrom I, Holmgrem J, Czerkinsky C. Induction of specific antibody responses in the human nasopharyngeal mucosa. In: Mestecky J. Advances in mucosal immunology. New York: Plenum Press, 1995: 1445-1450.
Chen H, Recent advances in mucosal vaccine development. J Control Rel 2000; 67: 117-128.
Asanuma H, Inaba, Y, Arzawa, C, Kurata T, Tamura S. Characterization of mouse nasal lymphocytes isolated by enzymatic extraction with collagenasa. J Immun Meth 1995; 187: 41-45.
Bienenstock J. The lung as an immunologic organ. Ann Rev Med 1984; 35: 49-62.
Spit BJ, Hendriksen EG, Bruijntjies JP, Kuper CF. Nasal lymphoid tissue in the rat. Cell Tiss Res 1989; 255: 193-198.
Asanuma H, Thompson AM, Iwasaki T, Sato Y, Inaba Y, Aizawa CH et al. Isolation and characterization of mouse nasal associated lymphoid tissue. J Immunol Meth 1997; 202: 123-131.
Gebert A. Identification of M cells in the rabbit tonsil by vimentin immunohistochemistry and in vivo protein transport. Histochem Cell Biol 1995; 104: 211-220.
Van Loveren H, Romboot PJ, Fischer RH, Lebret E, Van Bree L. Effects of oxidant air pollution on resistance to respiratory infection. A review. Repar 61900 2003. Bilthoven: National Institute of Public Health and Environmental Protection, 1993.
Smith MW, Thomas NW, Jenkins PG, Miller NG, Cremaschi D, Orta C. Selective transport of microparticles across Peyer´s patch follicle-associated M cells from mice and rats. Expl Physiol 1995, 80: 735-743.
Gebert A, Bartels H. Ultrastructure and protein transport of M cells in the rabbit cell. Pathoanat Rec 1995; 241: 487-495.
Tamura S, Yamanaka D, Shimohara M, Tamita TT, Kumase K, Tsuda Y. Synergistic action of cholera toxin B subunit (and E. coli Heat-labile toxin B subunit) and a trace amount of cholera whole toxin as an adjuvant for nasal influenza vaccine. Vaccine 1994; 12: 419-426.
Kraehenbuhl JP, Neutra MR. Molecular and cellular basis of immune protection of mucosal surfaces. Physiol Rev 1992; 72 (4): 853-879.
Feron VJ, Arts JH, Kuper CF, Slootweg PJ, Woutersen RA. Health risks associated with inhaled nasal toxicans. Crit Rev Toxicol 2001; 31 (3): 313-347.
Filiaci F, Masieri S, Zambetti G, Orlando M. Nasal hypersensitivity in purulent middle ear effusion. Alergol Immunopathol 1997; 25: 91-94.
Kodama S, Suenaga S, Hirano T, Suzuki M, Mogi G. Induction of specific immunoglobulin A and Th2 immune responses to outer membrane protein of nontypeable Haemophilus influenzae in middle ear mucosa by intranasal immunization. Infect Immun 2000; 68: 2294-2300.
Fitzgerald D, Msny RT. New approaches to antigen delivery. Crit Rev Ther Drug Car Syst 2000; 17 (3): 165-248.
Stewart-Tull DES. Freund-type mineral oil adjuvant emulsion. In: Stewart-Tull-Des. The theory and practical application of adjuvants. Clap, Om: John Wiley & Sans, 1995
Lindblad BE. Freund´s Adjuvants. In: O’Hagan, D.T. Methods in molecular medicine. Vol 42. Vaccine adjuvants: Preparation methods and research protocols. Totowa, NJ: Human Press, 2000: 49-63.
Lindblad BE, Hau J. Escaping from The use of Freund‘s complete adjuvant In: Balls, M, van Zeller PM, Halder ME. Progress in the reduction refinement and replacement of animal experimentation. Elsever Science, 2000: 1681-1685.
Goto N, Maeyama JI, Yasuda Y, Isaka M, Matano K, Kazuka S et al. Safety evaluation of recombinant cholera toxin B subunit produced by Bacillus brevis as a mucosal adjuvant. Vaccine 2000; 18 (20): 2164-2171.
Hagiwana Y, Komase K, Chen Y, Matsuo K, Susuki Y, Aizawa C et al. Mutans of cholera toxin as an effective and safe adjuvant for nasal influenza vaccine. Vaccine 1999; 17 (22): 2918-2926.
Agren CC, Ekman L, Lowenadler B, Lycke NY. Genetically engineered nontoxic vaccine adjuvant that combines B cell targeting with immunomodulation by cholera toxin A1 subunit. J Immunol 1997; 158 (8): 3936-3946.
Tamura S, Kurata T. A proposal for safety standards for human’s use of cholera toxin (or Escherichia coli heat-labile enterotoxin) derivatives as an adjuvant of nasal inactivated influenza vaccine. Jpn J Infect Dis 2000; 53: 98-106.
Novak M, Moldoveanu 2, Schafer D.R, Mestecky J. Murine model of protective immunity to influenza virus. Vaccine 1993; 11: 33-60.
Alpar HO, Almeda AJ, Brown MRW. Microspheres application by the nasal mucosa of the rat. J Drug Targ 1994; 2: 147-149.
Congemi GR, Santn VD, Nader MEM. Effect of intranasal administration of Lactobacillus fermentum on the respiratory react of mice. Biol Pharm Bull 2000; (23) 8: 973-978.
O’Hagan DT, Odd SG, Van Nest G. Recent advances in vaccine adjuvants: The development of MF59 emulsion and polymeric microparticles. Mol Med Tod 1997; 3 (2): 69-75.
Hillery AM. Microparticulate delivery systems: potential drug/vaccine carrier via mucosal reutes. Pharm Sci Tech Tod 1998; 2: 269-275.
O‘Hagan DT, Single M, Gupta RK. Poly (lactide-co-glycolide) microparticles for the development of single-done controlled-release vaccines. Adv Drug Del Rev 1998; 32: 225-246.
Gupta RK, Chang AC, Siber GR. Biodegradable polymer microspheres as vaccine adjuvants and delivery systems. Dev Biol Stand 1998; 3: 63-78.
Moore D, Mc Gurek, Adams S, Jores, WC, McGee, OHagan DT, Mills KH. Immunization with a suluble recombinant HIV protein entrapped in biodegradable microparticles induces HIV specific CD8+ citotoxic T lymphocytes and CD4+ Th1 cells. Vaccine 1995; 13: 1741-1749.
Gregoriadis G. Immunological adjuvants: A role for liposomas. Immunol Today 1990; 3: 89-97.
Wilschut J, de Haan A, Geerligs HJ, Huchshorn JP, van Small Scharrenburg GJ et al. Liposomes as a mucosal adjuvant system: an intranasal liposomal influenza subunit vaccine and the role of IgA in nasal anti-influenza immunity. J Liposome Res 1994; 4 (1): 301-314.
Panico A, Pignatello R, Cardile V, Puglisi G. Preparation of liposome formulation containing immunomodulatory peptide. Pharm Act 1997; 72: 1-10.
Sprott GD, Tolson DL, Patel GB Archacosomes as novel antigen delivery system. FEMS. Microbiol Letter 1997; 159: 17-22.
Krishnan L, Dicairech J, Patel GB, Sprott DG. Archaeosome vaccine adjuvants induce strong humoral cell-mediated and memory response comparison to conventional liposomes and alum. Infect Immun 2000; 68 (1): 54-63.
Krishnan L, Sad S, Patel GB, Sprott GD. The potent adjuvant activity of archaeosomes correlates to the recruitment and activities of macrophages and dendritic cells in vivo. J Immunol 2001; 1885-1893.
Mannino RJ, Canki M, Feketeova E, Scolpino AJ, Wang Z, Zhang F et al. Targeting immune response induction with cochleate and liposome-based vaccines. Adv Drug Deliv Rev 1998; 32 (3): 273-287
Morein B, Sundquist B, Hoglund S, Osterhaus D. ISCOM, a novel structure for antigenic presentation of membrane protein from enveloped viruses. Nature 1984; 308: 457-460.
Sjolander A, Cox JC, Barr GI. Iscoms: an adjuvant with multiple functions. J Leuk Biol 1998; 64:713-723.
Fontages R, Robert D, Contest Y, Dis G. Study of the immunogenicity of ribosomas and ribosomal RNA extracted from K. pneumoniae and S. pneumoniae. Arzneimitted-Forschung, 1980; 30: 142-172.
Giese M. DNA-antiviral vaccines. New development and approaches. A review. Virus Genes 1998; 17 (3): 219-232.
Thalhamer J, Leitner W, Hammerl P, Brtko J. Designing immune responses with genetic immunization and immunostimulatory DNA sequences. Endocrinol Reg 2001; 35: 143-166.
Bird AP. CpG islands as gene markers in the vertebrate nucleus. Trends Gen 1987; 342-346.
Krieg AM, Matson S, Fisher E. Oligodeoxynucleotide modifications determine the magnitude of immune stimulation by CpG motifs. Antisense Res Dev 1996; 6: 133-139.
Davis HL, Weerafna R, Waldschmidt TJ, Schorr J, Krieg AM. CpG DNA is a potent enhancer of specific immunity in mice immunized with recombined hepatitis B surface antigen. J Immunol 1998; 160: 870-76.
Krieg AM. Immune effects and mechanism of actions of CpG motifs. Vaccine 2001; 19: 618-622.
McCluskie MJ, Weeratna RD, Davis HL. Intranasal immunization of mice with CpG DNA induces strong systemic and mucosal responses that are influenced by other mucosal adjuvants and antigen distribution. Mol Med 2000; 6 (10): 867-877.