2009, Número 3
<< Anterior Siguiente >>
Rev Inst Nal Enf Resp Mex 2009; 22 (3)
La infección con Mycobacterium tuberculosis incrementa la producción de óxido nítrico y TNF-α en macrófagos alveolares de contactos intradomiciliarios de pacientes con tuberculosis
Carranza C, Juárez E, Sarabia C, Escobedo D, Sada E, Torres M
Idioma: Español
Referencias bibliográficas: 22
Paginas: 163-170
Archivo PDF: 102.21 Kb.
RESUMEN
Los contactos intradomiciliarios de pacientes con tuberculosis parecen ser una población protegida que desarrolla una memoria específica contra
Mycobacterium tuberculosis. En este trabajo se evaluó la capacidad de los macrófagos alveolares de contactos intradomiciliarios y de sujetos controles de la comunidad para producir óxido nítrico (NO) y factor de necrosis tumoral alfa (TNF-α) en respuesta a la infección con
M. tuberculosis cepas H37Ra (avirulenta) y H37Rv (virulenta). Nuestros resultados muestran que la producción de NO y TNF-a en los sobrenadantes de cultivos de macrófagos alveolares provenientes de controles intradomiciliarios se incrementó en los días 4 y 7. En contraste, la producción de NO y TNF-α fue menor en los macrófagos de los controles comunitarios. Estos resultados sugieren que la producción local de NO y TNF-α desempeña un papel importante en el control de la tuberculosis en individuos expuestos a la infección.
REFERENCIAS (EN ESTE ARTÍCULO)
The World Health Organization. Global Tuberculosis Control. Surveillance, Planning. WHO report, 2004:7-9.
Grybowski S, Allen E. The challeng of tuberculosis in decline. Am Rev Respir Dis 1974;90:707-720.
Schwander S, Torres M, Carranza CC, et ál. Pulmonary mononuclear cell responses to antigens of Mycobacterium tuberculosis in healthy household contacts of patients with active tuberculosis and healthy controls from the community. J Immunol 2000;165:1479-1485.
Mohan VP, Scanga CA, Yu K, et ál. Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. Infect Immun 2001;69:1847-1855.
Giacomini E, Iona E, Ferroni L, et ál. Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. J Immunol 2001;166:7033-7041.
MacMiking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. Identification of nitric oxide synthese as a protective locus against tuberculosis. Proc Natl Acad Sci 1997;94:5243-5248.
Scanga CA, Mohan VP, Tanaka K, Alland D, Flynn JL, Chan J. The inducible nitric oxide synthase locus confers protection against aerogenic challenge of both clinical and laboratory strains of Mycobacterium tuberculosis in mice. Infect Immun 2001;69:7711-7717.
Nozaki Y, Hasegawa Y, Ichiyama S, Nakashima I, Shimokata K. Mechanism of nitric oxide-dependent killing of Mycobacterium bovis BCG in human alveolar macrophages. Infect Immun 1997;65:3644-3647.
Wang CH, Liu CY, Lin HC, Yu CT, Chung KF, Kuo HP. Increased exhaled nitric oxide in active pulmonary tuberculosis due to inducible NO synthase upregulation in alveolar macrophages. Eur Respir J 1998;11:809-815.
Chan ED, Chan J, Schluger NW. What is the role of nitric oxide in murine and human host defense against tuberculosis? Current knowledge. Am J Respir Cell Mol Biol 2001;25:606-612.
De Maio J, Zhang Y, Ko C, Young DB, Bishai WR. A stationary-phase stress-response s factor from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 1996;93:2790-2794.
Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 1982;126:131-138.
Rich EA, Torres M, Sada E, Finegan CK, Hamilton BD, Tossi Z. Mycobacterium tuberculosis (MTB)-stimulated production of nitric oxide by human alveolar macrophages and relationship of nitric oxide production to growth inhibition of MTB. Tuber Lung Dis 1997;78: 247-255.
Nicholson S, Bonecini-Almeida Mda G, Lapa e Silva J, et ál. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 1996;183:2293-2302.
Jung YL, Ryan L, LaCourse R, North RJ. Properties and protective value of the secondary versus primary T helper type 1 response to airborne Mycobacterium tuberculosis infection in mice. J Exp Med 2005;201: 1915-1924.
Kim HC, Kim JH, Park JW, et ál. Difference of nitric oxide production in peripheral blood mononuclear cells and airway epithelial cells between healthy volunteer and patients with tuberculosis. Tubercul Respir Dis 1997;44:72.
Lee J, Remold HG, Ieong MH, Kornfeld H. Macrophage apoptosis in response to high intracellular burden of Mycobacterium tuberculosis is mediated by a novel caspase-independent pathway. J Immunol 2006; 176:4267-4274.
Davis AS, Vergne I, Master SS, Kyei GB, Chua J, Deretic V. Mechanism of inducible nitric oxide synthase exclusion from mycobacterial phagosomes. PLoS Pathog 2007;3:e186.
Aston C, Rom WN, Talbot AT, Reibman J. Early inhibition of mycobacterial growth by human alveolar macrophages is not due to nitric oxide. Am J Respir Crit Care Med 1998;157(6 Pt 1):1943-1950.
Hortelano S, Través PG, Zeini M, Alvarez AM, Boscá L. Sustained nitric oxide delivery delays nitric oxide-dependent apoptosis in macrophages: contribution to the physiological function of activated macrophages. J Immunol 2003;171:6059-6064.
Beisiegel M, Kursar M, Koch M, et ál. Combination of host susceptibility and virulence of Mycobacterium tuberculosis determines dual role of nitric oxide in the protection and control of inflammation. J Infect Dis 2009;199:1222-1232.
Axelrod S, Oschkinat H, Enders J, et ál. Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cell Microbiol 2008;10:1530-1545.