2001, Número 4
<< Anterior Siguiente >>
Rev Salud Publica Nutr 2001; 2 (4)
Resistencia a insecticidas en insectos vectores de enfermedades con énfasis en mosquitos
Flores AE, Badii MH, Ponce GG
Idioma: Español
Referencias bibliográficas: 47
Paginas:
Archivo PDF: 90.52 Kb.
FRAGMENTO
Los insecticidas juegan un papel central en el control de vectores de enfermedades tales como mosquitos, moscas, pulgas, piojos, chinches, etc. En 1955 la OMS propuso la erradicación global de una de las enfermedades más prevalecientes transmitidas por vectores, la malaria, con el uso de rociados residuales intradomiciliares de DDT. Sin embargo la euforia por los insecticidas terminó pronto y en 1976 la OMS revirtió su concepto de erradicación a control de la malaria. Los cambios en la política se debieron a la aparición de la resistencia al DDT en un gran número de mosquitos vectores. En 1975 la OMS reportó que una población de 256 millones de personas vivían en áreas donde la resistencia a DDT y/o los BHC (Bifenil Poli Clorinados) mermaron los esfuerzos para el control de la malaria. (Esto no incluyó a la región de Africa, en donde ocurren el 90% de los casos de Malaria y donde ya se había registrado resistencia de
Anopheles gambiae al DDT, el principal vector de malaria.)
REFERENCIAS (EN ESTE ARTÍCULO)
Hemingway J. and H. Ranson. 2000. Insecticide resistance in insect vectors of human disease. Ann. Rev. Entomol. 45: 371-391.
Brogdon, W. G. and J. C. McAllister. 1998. Insecticide resistance and vector control. CDC, Atlanta, GA, USA. 4(4): 12 pp.
Vector resistance to insecticides. 1992. 15th report of the WHO Expert Committee on Vector Biology and Control. World Health Organ Tech. Rep. Ser. 818: 1-62.
Krogstad, D.J. 1996. Malaria as a reemerging disease. Epidemiol. Rev. 18: 77-89.
Rodhain, F. 1996. Donnes recents sur l’epidemiologie de l’encephalite japonaise. Bull Acad. Natl. Med. 180: 1325-1337.
Hemingway J. and H. Ranson, Op.cit.
Brown, A.W.A. 1986. Insecticide resistance in mosquitoes: a pragmatic review. J. Am. Mosq. Control Assoc.2: 123-140.
WHO. 1992. Vector resistance to pesticides. Fifteenth report of the expert committee on vector biology and control. In WHO Tech. Rep. Ser. 818: 1-55.
Patil, N.S., K.S. Lole and D. N. Deobagkar. 1996. Adaptive larval thermotolerance and induced crosstolerance to propoxur insecticides in mosquitoes Anopheles stephensi and Aedes aegypti. Med. Vet. Entomol. 10: 277-282.
Miyazaki, M., K. Ohyama, D.Y. Dunlap and F. Matsumura. 1996. Cloning and sequencing of the paratypes sodium channel gene from susceptible and kdr-resistant German cockraches (Blatella germanica) and house fly (Musca domestica). Mol. Gen. Genet. 252: 61-68.
Williamson, M.S., D. Martinez-Torres, C.A. Hick and A.L. Devonshire. 1996. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol. Gen. Genet. 252: 51-60.
Vais, H., M.S. Williamson, C.A. Hick, N. Eldursi, A.L. Devonshire and P.N. Usherwood. 1997. Functional analysis of a rat sodium channel carrying a mutation for insect knock-down resistance (kdr) to pyrethroids. FEBS Lett. 413: 427-332.
Ffrench-Constant, R.H., J. Steichen, T.A. Rocheleau, K. Aronstein and R.T. Roush. 1993. A single amino acid substitution in a beta-aminobutyric acid subtype A receptor locus associated with cyclodiene insecticide resistance in Drosophila populations. Proc. Natl. Acad. Sci. USA. 90: 1957-1961.
Cygler, M., J.D. Schrag, J.L. Sussman, M. Harel, I. Silman and M.K. Gentry. 1993. Relationship between sequence conservation and three-dimensional structure in a large familiy of esterases, lipases and related proteins. Protein Sci. 2: 366-382.
Oakeshott J.G., E.A. van Papenrecht, T.M. Boyce, M.J. Healy and R. J. Russell. 1993. Evolutionary genetics of Drosophila esterases. Genetica. 90: 239-268.
Wilkinson, C.F. 1976. Insecticide biochemistry and physiology. New York: Plenum Press, p. 768.
Maitra, S., S.M. Dombroski, L.C. Waters and R. Ganguly. 1996. Three second chromosome-linked clustered Cyp6 genes show differential constitutive and barbital-induced expression in DDT-resistant and susceptible strains of Drosophila melanogaster. Gene. 180: 165-71.
Tomita, T., N.Liu., F.F. Smith, P. Shridhar and J.G. Scott. 1995. Molecular mechanisms involved in increased espression of a cytochrome P450 responsible for pyrethroid resistance in the housefly, Musca domestica. Insect. Mol. Biol. 4: 135-140.
Tomita, T., J.G. Scott. 1995. cDNA and deduced protein séquense of Cyp6D1: the putative gene for a cytochrome P450 responsible for pyrethroid resístanse in house fly. Insect. Biochem. Mol. Biol. 25: 275-283.
Carino, F. A., J.F. Koener, F.W. Plapp and R. Feyereisen. 1994. Constitutive overexpression of the cytochrome P450 gene Cyp6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochem. Mol. Biol. 24: 411-8.
Cohen, M.B., J.F. Koener and R. Feyereisen. 1994. Structure and chromosomal localization of Cyp6A1, a cytochrome P450-encoding gene from the house fly. Gene. 146: 267-272.
Liu, N.and J.G. Scott. 1997. Phenobarbital induction of Cyp6D1 is due to a trans acting factor on autosome 2 in house flies, Musca domestica . Insect. Mol. Biol. 6: 77-81.
Hayes, J.D. and D. J. Pulford. 1995. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 30: 445-600.
Zhou, Z-H., and M.A. Syvanen. 1997. A complex glutathione transferase gene family in the housefly Musca domestica. Mol. Gen. Genet. 256: 187-194.
Clark, J.M., J.G. Scott, F. Campos and J.R. Bloomquist JR. 1995. Resistance to ivermectins: extent, mechanisms, and management. Ann. Rev. Entomol. 40: 1-30.
Rao, D.R., T.R. Mani, R. Rajendran, A.S. Joseph, A. Gajanana and R. Reuben. 1995. Development of a high level of resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus. J. A. Mosq. Control Assoc. 12: 247-250.
Rodcharoen, J. and M. S. Mulla. 1996. Cross resistance to Bacillus sphaericus strains in Culex quinquefasciatus. J. Am. Mosq. Control Assoc. 12: 247-250.
Nielsen-Leroux, C., F. Pasquier, J.F. Charles, G. Sinegre, B. Gaven and N. Pasteur. 1997. Resistance to Bacillus sphaericus involves different mechanisms in Culex pipiens (Diptera: Culicidae) larvae. J. Med. Entomol. 34: 321-327.
Escriche B, B. Tabashnik, N. Finson and J. Ferre. 1995. Immunohistochemical detection of binding of CryIA crystal proteins of Bacillus thuringiensis in highly resistant strains of Plutella xylostella (L.) from Hawaii. Biochem. Biophys. Res. Commun. 212: 388-395.
Tabashnik, B.E., T. Malvar, Y.B. Liu, N. Finson, D. Borthakur and B.S. Shin. 1996. Cross resistance of the diamondback moth indicates altered interactions with domain II of Bacillus thuringiensis toxins. Appl. Environ. Microbiol. 62: 2839-2844.
Keller, M., B. Sneh, N. Strizhov, E. Prudovsky, A. Regev and C. Koncz. 1996. Digestion of deltaendotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera litoralis to CryIC. Insect Biochem. Mol. Biol. 26: 365-373.
Tabashnik, B.E., Y.B. Liu, N. Finson, L. Masson and D.G. Heckel. 1997. One gene in diamonback moth confers resistance to four Bacillus thuringiensis toxins. Proc. Natl. Acad. Sci. USA. 94: 1640-1644.
Cheong H, R.K. Dhesi and S.S. Gill. 1997. Marginal cross-resistance to mosquicidal Bacillus thuringiensis strains in Cry 11A-resistant larvae: presence of Cry 11A-like toxins in these strains. FEMS Microbiol Lett. 153: 419-424.
Rivet, Y., M. Raymond, J.A. Rioux, A. Delalbre and N. Pasteur. 1994. Resistance monitoring in Culex pipiens (Diptera: Culicidae) from central-eastern France. J. Med. Entomol. 31: 231-239.
Vulule, J.M., R.F. Beach, F.K. Atieli, D.L. Mount, J.M. Roberts and R.W. Mwangi. 1996. Long-term use of permethrin-impregnated nets does not increase Anopheles gambiae permethrin tolerance. Med. Vet. Entomol. 10: 71-79.
Curtis, C.F. 1985. Theoretical models of the use of insecticide mixtures for the management of resistance. Bull. Entomol. Res. 75: 259-265.
Curtis C.F., N. Hill and S.H. Kasim. 1993. Are there effective resistance management strategies for vectors of human disease ? Biol. J. Linn. Soc. 48: 3-18.
Roush R. T. 1989. Designing resistance management programmes: how can you choose? Pestic. Sci. 26: 423-42.
Tabashnik, B.E. 1989. Managing resistance with multiple pesticide tactics: theory, evidence and recommendation. J. Econ. Entomol. 82: 1263-1269.
Hemingway J, R.P. Penilla, A.D. Rodriguez, B.M. James and W. Edge. 1997. Resistance management strategies in malaria vector mosquito control. A large scale trial in Southern Mexico. Pest. Sci. 51: 375-382.
Penilla, R.P., A.D. Rodríguez, J. Hemingway, J. L. Torres, J.I. Arredondo-Jimenez and M.H. Rodríguez. 1998. Resistance management strategies in malaria vector mosquito control. Baseline data for a large-scale field trial against Anopheles albimanus in México. Med. Vet. Entomol. 12: 217-233.
Brogdon, W. G. and J. C. McAllister. 1998. Simplification of adult mosquito bioassays through use of time-mortality determinations in bottles. J. Am. Mosq.Control Assoc. 14(2): 159-164.
Brogdon W, G. and A. M. Barber. 1990. Microplate assay of glutathione S-transferase activity for resistance detection in single-mosquito homogenates. Comp. Biochem. Physiol. 96B: 339-342.
Brogdon, W. G. and J. C. McAllister. 1997. Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. J. Am. Mosq.Control Assoc. 13: 233-237.
Lengeler, C. and R.W. Snow. 1996. From efficacy to effectiveness: insecticide-treated bednets in Africa. Bull World Health Organ. 74: 325-332.