2009, Número 3
<< Anterior Siguiente >>
Residente 2009; 4 (3)
Características e implicaciones terapéuticas de las células dendríticas
A Rivas-Caicedo, E García-Zepeda
Idioma: Español
Referencias bibliográficas: 50
Paginas: 97-104
Archivo PDF: 241.00 Kb.
RESUMEN
La capacidad de las células dendríticas (CDs) para entrar a los ganglios linfáticos, encontrarse con los linfocitos T y presentarles antígenos para conducirlos a un estado de activación o tolerancia, hace que estas células presentadoras de antígeno (APC por sus siglas en inglés) sean las directoras de la respuesta inmune. El fenotipo y la función de las CDs varía ampliamente; y así como intervienen en la selección tímica, participan también en la secreción de citocinas específicas en el sitio de inflamación. La plasticidad que poseen estas células ha hecho difícil su clasificación, sin embargo, se han determinado marcadores que permiten identificar parcialmente los diferentes grupos de CDs, haciendo posible establecer algunas de sus características como APC, evidenciar sus capacidades de migración y analizar su papel como activadoras o inductoras de tolerancia de los linfocitos T. Las investigaciones realizadas en esta área han permitido vislumbrar a las CDs como una excelente herramienta en terapias contra el cáncer o en tratamientos para disminuir el rechazo de trasplantes. Dichos estudios se encuentran encaminados a explotar al máximo las funciones de las CDs en la clínica, quedando un amplio campo por explorar.
REFERENCIAS (EN ESTE ARTÍCULO)
Shortman K, Naik SH. Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 2007; 7: 19-30.
Liu K, Victoria G, Schwickert T, Guermonprez P, Meredith M, Yao K, Chu F, Randolph G, Rudensky A, Nussenzweig. In vivo analysis of dendritic cells development and homeostasis. Science 2009; 324: 392-397.
Merad M, Fong L, Bogenberger J, Engleman E. Differentiation of myeloid dendritic cells into CD8alpha-positive dendritic cells in vivo. Blood 2000; 96: 1865-1872.
Manz M, Traver D, Miyamoto T, Weissman I, Akashi K. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 2001; 97: 3333-3341.
Ardavin C. Origin, precursors and differentiation of mouse dendritic cells. Nat Rev Immunol 2003; 3: 582-591.
Martínez del Hoyo G, Martín P, Vargas HH et al. Characterization of a common precursor population for dendritic cells. Nature 2002; 415: 1043-1047.
Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I. Langerhans cell renew in the skin throughout life under steady-state conditions. Nat Immunol 2002; 3: 1135-1141.
Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, Dai XM, Stanley ER, Randolph GJ, Merad M. Langerhans cells arise from monocytes in vivo. Nat Immunol 2006; 7: 265-272.
Ohl L, Mohaupt M, Czeloth N, Hintzen G, Kiafard Z, Zwirner J, Blankenstein T, Henning G, Förster R . CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 2004; 2: 279-288.
Liu K, Waskow C, Liu X, Yao K, Hoh J, Nussenzweig M. Origin of dendritic cells in peripheral lymphoid organs of mice. Nat Immunol 2007; 8: 578-583.
Kissenpfennig A, Henri S, Dubois B, Laplace-Builhé C, Perrin P, Romani N, Tripp CH, Douillard P, Leserman L, Kaiserlian D, Saeland S, Davoust J, Malissen B. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distintic from slower migrating Langerhans cells. Immunity 2005; 22: 643-654.
Kamath AT, Pooley J, O’Keeffe MA, Vremec D, Zhan Y, Lew AM, D’Amico A, Wu L, Tough DF, Shortman K. The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J Immunol 2000; 165: 6762-6770.
Cavanagh L, Von Andrian U. Travellers in many guises: The origins and destinations of dendritic cells. Immunol Cell Biol 2002; 80: 448-462.
Martin-Fontecha A, Sebastiani S, Höpken UE, Uguccioni M, Lipp M, Lanzavecchia A, Sallusto F. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. K Exp Med 2003; 198: 615-621.
Mori S, Nakano H, Aritomi K, Wang CR, Gunn MD, Kakiuchi T. Mice lacking expression of the chemokines CCL21-Ser and CCL19 (plt mice) demonstrate delayed but enhanced T cell immune responses. J Exp Med 2001; 193: 207-217.
Xu H, Guan H, Zu G, Bullard D, Hanson J, Slater M, Elmets CA. The role of ICAM-1 molecule in the migration of Langerhans cells in the skin and regional lymph node. Eur J Immunology 2001; 31: 3085-3093.
Cera MR, Del Prete A, Vecchi A, Corada M, Martin-Padura I, Motoike T, Tonetti P, Bazzoni G, Vermi W, Gentili F, Bernasconi S, Sato TN, Mantovani A, Dejana E. Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A-deficient mice. J Clin Invest 2004; 114: 729-738.
Luft T, Jefford M, Luetjens P, Toy T, Hochrein H, Masterman KA, Maliszewski C, Shortman K, Cebon J, Maraskovsky E. Functionally distinct dendritic cell (DC) populations induced by physiologic stimuli: prostaglandin E(2) regulates the migratory capacity of specific DC subsets. Blood 2002; 100: 1362-1372.
Robbiani D, Finch R, Jäger D, Muller WA, Sartorelli AC, Randolph GJ. The leukotriene C4 transporter MRP1 regulates CCL19 (MIP-3â, ELC)–Dependent mobilization of dendritic cells to lymph nodes. Cell 2000; 103: 757-768.
Ratzinger G, Stoitzner P, Ebner S, Lutz MB, Layton GT, Rainer C, Senior RM, Shipley JM, Fritsch P, Schuler G, Romani N. Matrix metalloproteinases 9 an 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin. J Immunol 2002; 268: 4361-4371.
Van VQ, Lesage S, Bouguermouh S, Gautier P, Rubio M, Levesque M, Nguyen S, Galibert L, Sarfati M. Expression of the self-marker CD47 on dendritic cells governs their trafficking to secondary lymphoid organs. EMBO J 2006; 25: 5560-5568.
Qu C, Edwards EW, Tacke F, Angeli V, Llodrá J, Sánchez-Schmitz G, Garin A, Haque NS, Peters W, van Rooijen N, Sánchez-Torres C, Bromberg J, Charo IF, Jung S, Lira SA, Randolph GJ. Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J Exp Med 2004; 200: 1231-1241.
Kabashima K, Shiraishi N, Sugita K, Mori T, Onoue A, Kobayashi M, Sakabe J, Yoshiki R, Tamamura H, Fujii N, Inaba K, Tokura Y. CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am J Pathol 2007; 171: 1249-1257.
Rimoldi M, Rescigno M. Uptake and presentation of orally administered antigens. Vaccine 2005; 23: 1793-1796.
Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP, Pabst R, Lutz MB, Sorokin L. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 2005; 22: 19-29.
Segura E, Nicco C, Lombard B, Véron P, Raposo G, Batteux F, Amigorena S, Théry C et al. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 2005; 106: 216-223.
Blander JM, Medzhitov R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 2006; 440: 808-812.
Degli-Esposti MA, Smyth MJ. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 2005; 5: 112-124.
Alpan O, Bachelder E, Isil E, Arnheiter H, Matzinger P. ‘Educated’ dendritic cells act as messengers from memory to naive T helper cells. Nat Immunol 2004; 5: 615-622.
Kaiser A, Donnadieu E, Abastado JP, Trautmann A, Nardin A. CC chemokine ligand 19 secreted by mature dendritic cells increases naïve T cell scanning behavior and their response to rare cognate antigen. J Immunol 2005; 175: 2349-2356.
Nobile C, Lind M, Miro F, Chemin K, Tourret M, Occhipinti G, Dogniaux S, Amigorena S, Hivroz C et al. Cognate CD4+ T cell-dendritic cell interactions induce migration of immature dendritic cell through dissolution of their podosomes. Blood 2008; 7: 3579-3590.
Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 2002; 23: 445-449.
Liu K, Iyoda T, Saternus M, Kimura Y, Inaba K, Steinman RM. Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med 2002; 196: 1091-1097.
Levings MK, Sangregorio R, Galbiati F, Squadrone S, de Waal Malefyt R, Roncarolo MG. IFN-alpha and IL-10 induce the differentiation of human type 1 T regulatory cells. J Immunol 2001; 166: 5530-5539.
Martín P, Del Hoyo GM, Anjuère F, Arias CF, Vargas HH, Fernández-L A, Parrillas V, Ardavín C. Characterization of a new subpopulation of mouse CD8alpha+ B220+ dendritic cells endowed with type 1 interferon production capacity and tolerogenic potential. Blood 2002; 100: 383-390.
Fallarino F, Asselin-Paturel C, Vacca C, Bianchi R, Gizzi S, Fioretti MC, Trinchieri G, Grohmann U, Puccetti P. Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement. J Immunol 2004; 173: 3748-3754.
Grohmann U, Bianchi R, Orabona C, Fallarino F, Vacca C, Micheletti A, Fioretti MC, Puccetti P. Functional plasticity of dendritic cell subsets as mediated by CD40 versus B7 activation. J Immunol 2003; 171: 2581-2587.
Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E, Kroemer G, Martin F, Chauffert B, Zitvogel L. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 2005; 202: 919-929.
Idoyaga J, Moreno J, Bonifaz L. Tumor cells prevent mouse dendritic cell maturation induced by TLR ligands. Cancer Immunol Immunother 2007; 56: 1237-1250.
Preynat-Seauve O, Schuler P, Contassot E, Beermann F, Huard B, French LE. Tumor-infiltrating dendritic cells are potent antigen-presenting cells able to activate T cells and mediate tumor rejection. J Immunol 2006; 176: 61-67.
Geiger C, Regn S, Weinzierl A, Noessner E, Schendel DJ. A Generic RNA-pulsed dendritic cell vaccine strategy for renal cell carcinoma. J Transpl Med 2005; 3: 29-44.
Larmonier N, Merino D, Nicolás A, Cathelin D, Besson A, Bateman A, Solary E, Martin F, Katsanis E, Bonnotte B. Apoptotic, necrotic, or fused tumor cells: an equivalent source of antigen for dendritic cell loading. Apoptosis 2006; 11: 1513-1524.
Tacken PJ, de Vries IJ, Gijzen K, Joosten B, Wu D, Rother RP, Faas SJ, Punt CJ, Torensma R, Adema GJ, Figdor CG. Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood 2005; 106: 1278-1285.
Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H, Brimnes MK, Moltedo B, Moran TM, Steinman RM. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004; 199: 815-824.
Seya T, Akazawa T, Tsujita T, Matsumoto M. Role of Toll-like receptors in adjuvant-augmented immune therapies. Evid Based Complement Alternat Med 2006; 3: 31-38.
Tormo D, Ferrer A, Bosch P, Gaffal E, Basner-Tschakarjan E, Wenzel J, Tüting T. Therapeutic efficacy of antigen-specific vaccination and Toll-like receptor stimulation against established transplanted and autochthonous melanoma in mice. Cancer Res 2006; 66: 5427-5435.
Kuwana M, Kaburaki J, Wright TM, Kawakami Y, Ikeda Y. Induction of antigen-specific human CD4+ T cell anergy by peripheral blood DC2 precursors. Eur J Immunol 2001; 31: 2547- 2557.
Fugier-Vivier I, Rezzoug F, Huang Y, Layman-Graul A, Schanie C, Xu H Chilton PM, Ildstad ST. Plasmacytoid precursor dendritic cells facilitate allogenic hematopoietic stem cell engraftment. J Exp Med 2005; 201: 373-383.
Ochando JC, Homma C, Yang Y, Hidalgo A, Garin A, Tacke F, Angeli V, Li Y, Boros P, Ding Y, Jessberger R, Trinchieri G, Lira SA, Randolph GJ, Bromberg JS. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat Immunol 2006; 7: 652-662.
Wen H, Schaller M, Dou Y, Hogaboam C, Kunkel S. Dendritic cells at the interface of innate and acquired immunity: the role for epigenetic changes. J Leukoc Biol 2008; 83: 439-446.