2009, Número 1
<< Anterior Siguiente >>
Rev Mex Ing Biomed 2009; 30 (1)
Espectrofluorómetro portátil para realizar mediciones in-vivo e in-situ de material biológico
Moreno GE, Rosa VJM, Fabíla BDA, Pérez GN, Mujica AC, Domíngez-Cherit J
Idioma: Ingles.
Referencias bibliográficas: 28
Paginas: 6-12
Archivo PDF: 250.54 Kb.
RESUMEN
Los métodos de fluorescencia son ampliamente usados en el laboratorio para la medición de concentraciones de especies. Tales mediciones son por tanto no realizadas ni
in vivo ni
in situ, además de que normalmente son costosas y consumen mucho tiempo debido a los procedimientos de preparación de las muestras. Aquí se presenta un sistema de fluorescencia portátil en base a un mini-espectrómetro, una fuente de luz en base a un led, una fibra óptica bifurcada y una laptop. El espectrofluorómetro es útil para medir
in vivo e
in situ sustancias fluorescentes tales como tejido humano y otros materiales orgánicos y no orgánicos. El sistema es controlado desde la laptop por medio de un programa escrito en el lenguaje gráfico G de LabVIEW 7.1, el cual mide y procesa los espectros en tiempo real. Se presentan mediciones realizadas con un led de 200 mW que emite a 365 nm.
REFERENCIAS (EN ESTE ARTÍCULO)
Lakowicz JR. Principles of fluorescence spectroscopy. Klumer Academic/Plenum Publishers, 2nd Edition USA, 1999.
Topics in Fluorescence Spectroscopy, Volume 1: Techniques. Edited by Lakowics JR. Plenum Press, New York, 1991.
Gore MG. Spectrophotometry and Spectrofluorimetry. Oxford University Press, 2nd Edition UK, 2000.
Valeur B. Molecular fluorescence: principles and applications. Wiley-BCH-Verlag, Federal Republic of Germany, 2002.
Fang Q, Papaioannou T, Jo JA, Vaita R, Shastry K. Time-domain laser- induced fluorescence spectroscopy apparatus for clinical diagnostics. Review of Scientific Instruments 2004; 75: 151-162.
Lassiter SJ, Stryjewski WJ, Wang Y, Soper SA. Shedding light on DNA analysis multiplexed detection on identification using fluorescence lifetime methods. Spectroscopy 2002; 17: 14-18, 20-23.
ORTEC, Application Note AN50 «Instrumentation for Fluorescence Lifetime Spectrometry», www.ortec-online.com.
Prasad PN. Introduction to Biophotonics. Jhon Wiley & Sons, Inc., 2003.
Vo-Dinh T. Biomedical Photonics Handbook. 2003.
Kemény L, Koreck A. Ultraviolet light phototherapy for allergic rhinitis. J Photochem Photobiol B Biol 2007; 87: 58-65.
Pal G, Dutta A, Mitra K, Grace MS, Amat A, Romanczyk TB et al. Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes. J Photochem Photobiol B Biol 2007; 86: 252-261.
Stege H, Roza L, Vink AA, Grewe M, Ruzicka T, Grether-Beck S. Enzyme plus light therapy to repair DNA damage in ultraviolet-irradiated human skin. PNAS 2000; 97: 1790-1795.
Dhadwall HS, Ansari RR, DellaVecchia MA. Early detection of cataracts using a coherent fiber optic sensor. BOS-SPIE 1994; 3: 3-4.
Villete S, Pigaglio-Deshayes S, Beber-Bizet C, Validire P, Bourg-Heckly G. Ultraviolet-induced autofluorescence characterization of normal and tumoral esophageal epithelium cells with quantitation of NAD(P) H. Photochem Photobiol Sci 2006; 5: 483-492.
Trujillo EV, Sandison DR, Utzinger U, Ramanujam N, Follen M, Richard-Kortum R. Method to determine tissue fluorescence efficiency in vivo and predict signal-to-noise ratio for spectrometers. Applied Spectroscopy 1998; 52: 943-951.
Chandra M, Vishwanat K, Fichter GD, Liao E, Hollister SJ, Mycek MA. Quantitative molecular sensing in biological tissues: an approach to non-invasive optical characterization. Optics Express 2006; 14: 6157-6171.
Agar NS, Halliday JM, Bernetson RS, Ananthaseamy HN, Wheeler M, Jones AM. The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: A role for UVA in human skin carcionogenesis. PNAS 2004; 101: 4954-4959.
Anderson J, Fischer R, Smith C, Webb S, Dennis J. In situ detection of pathogen indicators using laser-induced fluorescence in the Proccedings of the 2003 UCOWR Annual Conference «Water Security in the 21st Century», http://ucowr.siu.edu/proc/W1C.pdf .
Aldstadt J, St. Germain R, Grundl T, Schweitzer R. An in situ laser-induced fluorescence system for polycyclic aromatic hydrocarbon-contaminated sediments. United States Enviromental Protection Agency, Great Lakes National Program Office (2002), http://www.epa.gov/glnpo/sediment/pah/finalrpt.pdf.
Lenke M, Fernandez R, Löhmannsröben HG. In-situ LIF analysis of biological and petroleum-based hydraulic oils on soil. Sensors 2005; 5: 61-69.
Agati G, Pinelli P, Cortés S, Romani A, Zerovic ZG. Nondestructive evaluation of anthocyanins in olive (Olea europea) fruits by in situ chlorophyll. J Agric Food Chem 2005; 53: 1354-1363.
NASA «SBIR leads to plant fluorescence sensor», Innovative Partnerships program, http://technology.ssc.nasa.gov/suc_sbir_plant_sensor.html.
Nesterenko TV, Tikhomirov AA, Shikhov VN. Chlorophyll fluorescence induction and estimation on plant resistance to stress factors. Zh Obshch Biol 2007; 68: 444-458.
Moller C, Mortensen G. Fluorescence spectroscopy; a rapid tool for analyzing dairy products. J Agric Food Chem 2008; 56: 720-729.
http://www.neuropathologyweb.org/chapter7/chapter7dMiscellaneous.html.
Georgakoudi I, Jacobson BC, Müller MG, Sheets EE, Badizadegan K, D. Carr-Locke DL. NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Research 2002; 62: 682-687.
International Programme on Chemical Safety, Enviromental Healt Criteria 160, Ultraviolet Radiation, World Healt Organization, EHC 160, 1994: 2nd Edition.
Poulli KI, Mousdis GA, Georgiou CA. Rapid synchronous fluorescence method for virgin olive oil adulteration assessment, Food Chemistry, 2007; 105: 369-375.