2009, Número 1
<< Anterior
Bioquimia 2009; 34 (1)
Evaluación de la heterogeneidad y función de HDL por el laboratorio
Movva R, Rader DJ
Idioma: Español
Referencias bibliográficas: 122
Paginas: 37-52
Archivo PDF: 229.07 Kb.
RESUMEN
Antecedentes: La concentración de colesterol HDL-C (HDL-C) y su principal componente proteico apolipoproteína (apo) A-I están inversamente asociados con el riesgo cardiovascular, dejando atrás el concepto de que la terapia para aumentar la concentración de HDL-C y de apoA-I sea antiesclerótica y protectora contra los eventos cardiovasculares. Una falla reciente del fármaco torcetrapib, una proteína inhibidora que transfiere el éster colesteril y que sustancialmente aumenta las concentraciones de HDL-C, ha llamado la atención por tener una heterogeneidad y función distinta de las concentraciones de esta molécula.
Contenido: Esta revisión presenta el estado actual del conocimiento sobre los ensayos heterogéneos de HDL-C, su función y relación con la enfermedad cardiovascular. HDL-C es altamente heterogénea, con subfracciones que pueden ser identificadas con base en su densidad, tamaño, carga, y composición proteica, y el concepto atractivo de que ciertas subfracciones de HDL-C pueden predecir el riesgo cardiovascular. Además, se ha demostrado que HDL-C tiene una variedad de funciones que pueden contribuir al efecto protector cardiovascular, incluyendo la promoción del flujo de macrófagos de colesterol y el transporte de colesterol inverso y su efecto antiinflamatorio y promotor de óxido-nitroso.
Resumen: Los ensayos de laboratorio robustos para subfracciones de HDL-C y sus funciones, así como la validación de la utilidad de estos ensayos para predecir el riesgo cardiovascular y estimar la respuesta a las intervenciones terapéuticas son críticamente importantes y de un gran interés para los clínicos cardiovasculares e investigadores y químicos clínicos.
REFERENCIAS (EN ESTE ARTÍCULO)
Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, Manolio T, et al. Heart disease and stroke statistics—2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2006; 113: e85-151.
Gordon DJ, Rifkind, BM. High-density lipoproteins—the clinical implications of recent studies. N Engl J Med. 1989; 321: 1311-6.
Wilson PW, Abbott RD, Castelli WP. High density lipoprotein cholesterol and mortality. The Framingham Heart Study. Arteriosclerosis. 1988; 8: 737–41.
Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001; 285: 2486-97.
Alsheikh-Ali AA, Lin JL, Abourjaily P, Ahearn D, Kuvin JT, Karas RH. Prevalence of low high density lipoprotein cholesterol in patients with documented coronary heart disease or risk equivalent and controlled low-density lipoprotein cholesterol. Am J Cardiol. 2007; 100: 1499-501.
Barter P, Gotto AM, LaRosa JC, Maroni J, Szarek M, Grundy SM, et al. HDL cholesterol, very low levels of LDL cholesterol, and CV events. N Engl J Med. 2007; 357: 1301-10.
Kuivenhoven JA, Pritchard H, Hill J, Frohlich J, Assmann G, Kastelein J. The molecular pathology of lecithin:cholesterol acyltransferase (LCAT) deficiency syndromes. [Review] J Lipid Res. 1997; 38: 191-205.
Franceschini G, Sirtori CR, Capurso A, Weisgraber KH, Mahley RW. A-I Milano apoprotein: decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. J Clin Invest. 1980; 66: 892-900.
Bruckert E, von Eckardstein A, Funke H, Beucler I, Wiebusch H, Turpin G, Assmann G. The replacement of arginine by cysteine at residue 151 in apolipoprotein A-I produces a phenotype similar to that of apolipoprotein A-I Milano. Atherosclerosis. 1997; 128: 121-8.
Hobbs HH, Rader DJ. ABC1: connecting yellow tonsils, neuropathy, and very low HDL. J Clin Invest. 1999; 104: 1015-7.
Rader DJ. Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest. 2006; 116: 3090-100.
Manninen V, Elo MO, Frick MH, Haapa K, Heinonen OP, Heinsalmi P, et al. Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA. 1988; 260: 641-51.
Robins SJ, Collins D, Wittes JT, Papademetriou V, Deedwania PC, Schaefer EJ, et al. Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial. JAMA. 2001; 285: 1585-91.
Goldenberg I, Goldbourt U, Boyko V, Behar S, Reicher-Reiss H. Relation between on-treatment increments in serum high-density lipoprotein cholesterol levels and cardiac mortality in patients with coronary heart disease (from the Bezafibrate Infarction Prevention trial). Am J Cardiol. 2006; 97: 466-71.
Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, et al. Effects of long-term fenofibrate therapy on CV events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomized controlled trial. Lancet. 2005; 366: 1849-61.
The Coronary Drug Project Research Group. Clofibrate and niacin in coronary heart disease. JAMA. 1975; 231: 360-81.
Canner PL, Berge KG, Wenger NK, Stamler J, Friedman L, Prineas RJ, Friedewald W. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J Am Coll Cardiol. 1986; 8: 1245-55.
Taylor AJ, Sullenberger LE, Lee HJ, Lee JK, Grace KA. Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation. 2004; 110: 3512-7.
Brown BG, Zhao XQ, Chait A, Fisher LD, Cheung MC, Morse JS, et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med. 2001; 345: 1583-92.
Nicholls SJ, Tuzcu EM, Sipahi I, Grasso AW, Schoenhagen, P Hu, T al. Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. JAMA. 2007; 297: 499-508.
Brousseau ME, Schaefer EJ, Wolfe ML, Bloedon LT, Digenio AG, Clark RW. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N Engl J Med. 2004; 350: 1505-5.
Clark RW, Sutfin TA, Ruggeri RB, Willauer AT, Sugarman ED, Magnus-Aryitey G, et al. Raising high-density lipoprotein in humans through inhibition of cholesteryl ester transfer protein: an initial multidose study of torcetrapib. Arterioscler Thromb Vasc Biol. 2004; 24: 490-7.
Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007; 357: 2109-22.
Nissen SE, Tardif JC, Nicholls SJ, Revkin JH, Shear CL, Duggan WT, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med. 2007; 356: 1304-16.
Kastelein JJ, van Leuven SI, Burgess L, Evans GW, Kuivenhoven JA, Barter PJ, et al. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N Engl J Med. 2007; 356: 1620-30.
Rader DJ. Illuminating HDL: is it still a viable therapeutic target? N Engl J Med. 2007; 357: 2180–3.
TK, Krishna R, Anderson MS, Bergman AJ, Jin B, Fallon M, Cote J, et al. Effect of the cholesteryl ester transfer protein inhibitor, anacetrapib, on lipoproteins in patients with dyslipidaemia and on 24-h ambulatory blood pressure in healthy individuals: two double-blind, randomized placebocontrolled phase I studies. Lancet. 2007; 370: 1907-14.
Warnick GR, Nauck M, Rifai N. Evolution of methods for measurement of HDL-cholesterol: from ultracentrifugation to homogeneous assays. Clin Chem. 2001; 47: 1579-96.
Langlois MR, Blaton VH. Historical milestones in measurement of HDL-cholesterol: impact on clinical and laboratory practice. Clin Chim Acta. 2006; 369: 168-78.
Zannis VI, Chroni A, Krieger M. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med. 2006; 84: 276-94.
Linsel-Nitschke P, Tall AR. HDL as a target in the treatment of atherosclerotic CV disease. Nat Rev Drug Discov. 2005; 4: 193-205.
Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res. 2005; 96: 1221-32.
Timmins JM, Lee JY, Boudyguina E, Kluckman KD, Brunham LR, Mulya A, et al. Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J Clin Invest. 2005; 115: 1333-42.
Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res. 2004; 95: 764-72.
Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circ Res. 2006; 98: 1352-64.
Lindgren FT, Elliott HA, Gofman JW. The ultracentrifugal characterization and isolation of human blood lipids and lipoproteins, with applications to the study of atherosclerosis. J PhysColloid Chem. 1951; 55: 80-93.
Havel RJ, Eder HA, Bragdon JH. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955; 34: 1345-53.
Kirstein P, Carlson K. Determination of the cholesterol content of high density lipoprotein subfractions HDL2 and HDL3, without contamination of Lp(a), in human plasma. Clin Chim Acta. 1981; 113: 123-34.
Warnick GR, Benderson J, Albers JJ. Dextran sulfate-Mg2- precipitation procedure for quantitation of high-density-lipoprotein cholesterol. Clin Chem. 1982; 28: 1379-88.
Gidez LI, Miller GJ, Burstein M, Slagle S, Eder HA. Separation and quantitation of subclasses of human plasma high density lipoproteins by a simple precipitation procedure. J Lipid Res. 1982; 23: 1206-23.
Salonen JT, Salonen R, Seppanen K, Rauramaa R, Tuomilehto J. HDL, HDL2, and HDL3 subfractions, and the risk of acute myocardial infarction. A prospective population study in eastern Finnish men. Circulation. 1991; 84: 129-39.
Lamarche B, Moorjani S, Cantin B, Dagenais GR, Lupien PJ, Despres JP. Associations of HDL2 and HDL3 subfractions with ischemic heart disease in men: prospective results from the Quebec Cardiovascular Study. Arterioscler Thromb Vasc Biol. 1997; 17: 1098-105.
Stampfer MJ, Sacks FM, Salvini S, Willett WC, Hennekens CH. A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med. 1991; 325: 373-81.
Sweetnam PM, Bolton CH, Yarnell JW, Bainton D, Baker IA, Elwood PC, Miller NE. Associations of the HDL2 and HDL3 cholesterol subfractions with the development of ischemic heart disease in British men: the Caerphilly and Speedwell Collaborative Heart Disease Studies. Circulation. 1994; 90: 769-74.
Yu S, Yarnell JW, Sweetnam P, Bolton CH. High density lipoprotein subfractions and the risk of coronary heart disease: 9-years follow-up in the Caerphilly Study. Atherosclerosis. 2003; 166: 331-8.
Kulkarni KR. Cholesterol profile measurement by vertical auto profile method. Clin Lab Med. 2006; 26: 787-802.
Blanche PJ, Gong EL, Forte TM, Nichols AV. Characterization of human high-density lipoproteins by gradient gel electrophoresis. Biochim Biophys Acta. 1981; 665: 408-19.
Warnick GR, McNamara JR, Boggess CN, Clendenen F, Williams PT, Landolt CC. Polyacrylamide gradient gel electrophoresis of lipoprotein subclasses. Clin Lab Med. 2006; 26: 803-46.
Asztalos BF, Sloop CH, Wong L, Roheim PS. Two-dimensional electrophoresis of plasma lipoproteins: recognition of new apo A-Icontaining subpopulations. Biochim Biophys Acta. 1993; 1169: 291-300.
Asztalos BF, Batista M, Horvath KV, Cox CE, Dallal GE, Morse JS, et al. Change in alpha1 HDL concentration predicts progression in coronary artery stenosis. Arterioscler Thromb Vasc Biol. 2003; 23: 847-52.
Asztalos BF, Cupples LA, Demissie S, Horvath KV, Cox CE, Batista MC, Schaefer EJ. High-density lipoprotein subpopulation profile and coronary heart disease prevalence in male participants of the Framingham Offspring Study. Arterioscler Thromb Vasc Biol. 2004; 24: 2181-7.
Asztalos BF, Collins D, Cupples LA, Demissie S, Horvath KV, Bloomfield HE, et al. Value of high-density lipoprotein (HDL) subpopulations in predicting recurrent CV events in the Veterans Affairs HDL Intervention Trial. Arterioscler Thromb Vasc Biol. 2005; 25: 2185–91.
Jeyarajah EJ, Cromwell WC, Otvos JD. Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin Lab Med. 2006; 26: 847-70.
Rosenson RS, Otvos JD, Freedman DS. Relations of lipoprotein subclass levels and low-density lipoprotein size to progression of coronary artery disease in the Pravastatin Limitation of Atherosclerosis in the Coronary Arteries (PLAC-I) trial. Am J Cardiol. 2002; 90: 89-94.
Otvos JD, Collins D, Freedman DS, Shalaurova I, Schaefer EJ, McNamara JR, et al. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation. 2006; 113: 1556-63.
Mora S, Szklo M, Otvos JD, Greenland P, Psaty BM, Goff DC Jr, et al. LDL particle subclasses, LDL particle size, and carotid atherosclerosis in the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis. 2007; 192: 211-7.
van der Steeg, WA, Holme I, Boekholdt SM, Larsen ML, Lindahl C, Stroes ES, et al. High density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein A-I: significance for CV risk: the IDEAL and EPICNorfolk studies. J Am Coll Cardiol. 2008; 51: 634-42.
Walldius G, Jungner I, Holme I, Aastveit AH, Kolar W, Steiner E. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet. 2001; 358: 2026-33.
Birjmohun RS, Dallinga-Thie GM, Kuivenhoven JA, Stroes ES, Otvos JD, Wareham NJ, et al. Apolipoprotein A-II is inversely associated with risk of future coronary artery disease. Circulation. 2007; 116: 2029-35.
Warden CH, Hedrick CC, Qiao J-H, Castellani LW, Lusis AJ. Atherosclerosis in transgenic mice over-expressing apolipoprotein A-II. Science (Wash DC). 1993; 261: 469-72.
Fruchart JC, Ailhaud G. Apolipoprotein A-containing lipoprotein particles: physiological role, quantification, and clinical significance. Clin Chem. 1992; 38: 793-7.
Cheung MC, Albers JJ. Distribution of high density lipoprotein particles with different apoprotein composition: particles with A-I and A-II and particles with A-I but no A-II. J Lipid Res. 1982; 23: 747-53.
James RW, Hochstrasser D, Tissot JD, Funk M, Appel R, Barja F, et al. Protein heterogeneity of lipoprotein particles containing apolipoprotein A-I without apolipoprotein A-II and apolipoprotein A-I with apolipoprotein A-II isolated from human plasma. J Lipid Res. 1988; 29: 1557-71.
Atmeh RF, Shepherd J, Packard CJ. Subpopulations of apolipoprotein A-I in human high-density lipoproteins: their metabolic properties and response to drug therapy. Biochim Biophys Acta. 1983; 751: 175-88.
Puchois P, Kandoussi A, Fievet P, Fourrier JL, Bertrand M, Koren E, Fruchart JC. Apolipoprotein A-I containing lipoproteins in coronary artery disease. Atherosclerosis. 1987; 68: 35-40.
Genest JJ Jr, Bard JM, Fruchart JC, Ordovas JM, Wilson PF, Schaefer EJ. Plasma apolipoprotein A-I, A-II, B, E and C-III containing particles in men with premature coronary artery disease. Atherosclerosis. 1991; 90: 149-57.
Parra HJ, Arveiler D, Evans AE, Cambou JP, Amouyel P, Bingham A, et al. A case-control study of lipoprotein particles in two populations at contrasting risk for coronary heart disease. The ECTIM Study. Arterioscler Thromb. 1992; 12: 701-7.
Buring JE, O’Connor GT, Goldhaber SZ, Rosner B, Herbert PN, Blum CB, et al. Decreased HDL2 and HDL3 cholesterol, Apo A-I and Apo A-II, and increased risk of myocardial infarction. Circulation. 1992; 85: 22-9.
Asztalos BF, Demissie S, Cupples LA, Collins D, Cox CE, Horvath KV, et al. LpA-I, LpA-I:A-II HDL and CHD-risk: the Framingham Offspring Study and the Veterans Affairs HDL Intervention Trial. Atherosclerosis. 2006; 188: 59-67.
Blankenhorn DH, Alaupovic P, Wickham E, Chin HP, Azen SP. Prediction of angiographic change in native human coronary arteries and aortocoronary bypass grafts: lipid and nonlipid factors. Circulation. 1990; 81: 470-6.
Vaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, Cheung MC, et al. Shotgun proteomics implicates protease inhibition and complement activation in the anti-inflammatory properties of HDL. J Clin Invest. 2007; 117: 746-56.
Shiflett AM, Bishop JR, Pahwa A, Hajduk SL. Human high density lipoproteins are platforms for the assembly of multi-component innate immune complexes. J Biol Chem. 2005; 280: 32578-85.
Tall AR. Role of ABCA1 in cellular cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol. 2003; 23: 710-1.
Haghpassand M, Bourassa PA, Francone OL, Aiello RJ. Monocyte/macrophage expression of ABCA1 has minimal contribution to plasma HDL levels. J Clin Invest. 2001; 108: 1315-20.
Wang N, Lan D, Chen W, Matsuura F, Tall AR. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci USA. 2004; 101: 9774-9.
Kennedy MA, Barrera GC, Nakamura K, Baldan A, Tarr P, Fishbein MC, et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab. 2005; 1: 121-31.
Wang X, Collins HL, Ranalletta M, Fuki IV, Billheimer JT, Rothblat GH, et al. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest. 2007; 117: 2216-24.
Yvan-Charvet L, Ranalletta M, Wang N, Han S, Terasaka N, Li R, et al. Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest. 2007; 117: 3900-8.
Jian B, de la Llera-Moya M, Ji Y, Wang N, Phillips MC, Swaney JB, et al. Scavenger receptor class B type I as a mediator of cellular cholesterol efflux to lipoproteins and phospholipid acceptors. J Biol Chem. 1998; 273: 5599-606.
Repa JJ, Mangelsdorf DJ. The liver X receptor gene team: potential new players in atherosclerosis. Nat Med. 2002; 8: 1243- 8.
Naik SU, Wang X, Da Silva JS, Jaye M, Macphee CH, Reilly MP, et al. Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation. 2006; 113: 90-7.
Terasaka N, Hiroshima A, Koieyama T, Ubukata N, Morikawa Y, Nakai D, Inaba T. T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor-deficient mice. FEBS Lett. 2003; 536: 6-11.
Joseph SB, McKilligin E, Pei L, Watson MA, Collins AR, Laffitte BA, et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci USA. 2002; 99: 7604-9.
Levin N, Bischoff ED, Daige CL, Thomas D, Vu CT, Heyman RA, et al. Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler Thromb Vasc Biol. 2005; 25: 135-42.
Rothblat GH, de la Llera-Moya M, Atger V, Kellner-Weibel G, Williams DL, Phillips MC. Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res. 1999; 40: 781-96.
Chirinos JA, Zambrano JP, Chakko S, Schob A, Goldberg RB, et al. Ability of serum to decrease cellular acylCoA: cholesterol acyl transferase activity predicts CV outcomes. Circulation. 2005; 112: 2446-53.
Matsuura F, Wang N, Chen W, Jiang XC, Tall AR. HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway. J Clin Invest. 2006; 116: 1435-42.
Rothblat GH, de la Llera-Moya M, Favari E, Yancey PG, Kellner-Weibel G. Cellular cholesterol flux studies: methodological considerations. Atherosclerosis. 2002; 163: 1-8.
Mendez AJ. Cholesterol efflux mediated by apolipoproteins is an active cellular process distinct from efflux mediated by passive diffusion. J Lipid Res. 1997; 38: 1807-21.
Yancey PG, Kawashiri MA, Moore R, Glick JM, Williams DL, Connelly MA, et al. In vivo modulation of HDL phospholipid has opposing effects on SR-BI- and ABCA1-mediated cholesterol efflux. J Lipid Res. 2004; 45: 337-46.
Navab M, Anantharamaiah GM, Reddy ST, Hama S, Hough G, Grijalva VR, et al. Oral D-4F causes formation of pre-beta high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation. 2004; 109: 3215-20.
Morehouse LA, Sugarman ED, Bourassa PA, Sand TM, Zimetti F, Gao F, et al. Inhibition of CETP activity by torcetrapib reduces susceptibility to diet-induced atherosclerosis in New Zealand White rabbits. J Lipid Res. 2007; 48: 1263-72.
Yvan-Charvet L, Matsuura F, Wang N, Bamberger MJ, Nguyen T, Rinninger F, et al. Inhibition of cholesteryl ester transfer protein by torcetrapib modestly increases macrophage cholesterol efflux to HDL. Arterioscler Thromb Vasc Biol. 2007; 27: 1132-8.
Cuchel M, Rader DJ. Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation. 2006; 113: 2548-55.
Glomset JA. The plasma lecithins:cholesterol acyltransferase reaction. J Lipid Res. 1968; 9: 155-67.
Hovingh GK, Hutten BA, Holleboom AG, Petersen W, Rol P, Stalenhoef A, Zwinderman AH, et al. Compromised LCAT function is associated with increased atherosclerosis. Circulation. 2005; 112: 879-84.
Frohlich J, Dobiasova M. Fractional esterification rate of cholesterol and ratio of triglycerides to HDL-cholesterol are powerful predictors of positive findings on coronary angiography. Clin Chem. 2003; 49: 1873-80.
Dobiasova M, Adler L, Ohta T, Frohlich J. Effect of labeling of plasma lipoproteins with [(3)H]cholesterol on values of esterification rate of cholesterol in apolipoprotein B-depleted plasma. J Lipid Res. 2000; 41: 1356-7.
Schwartz CC, VandenBroek JM, Cooper PS. Lipoprotein cholesteryl ester production, transfer, and output in vivo in humans. J Lipid Res. 2004; 45: 1594-1607.
Zhuang Y, Wang J, Qiang H, Li Y, Liu X, Li L, Chen G. Cholesteryl ester transfer protein levels and gene deficiency in Chinese patients with cardio-cerebrovascular diseases. Chin Med J. (Engl). 2002; 115: 371-4.
Klerkx AH, de Grooth GJ, Zwinderman AH, Jukema JW, Kuivenhoven JA, Kastelein JJ. Cholesteryl ester transfer protein concentration is associated with progression of atherosclerosis and response to pravastatin in men with coronary artery disease (REGRESS). Eur J Clin Invest. 2004; 34: 21–8.
de Grooth GJ, Smilde TJ, Van Wissen S, Klerkx AH, Zwinderman AH, Fruchart JC, et al. The relationship between cholesteryl ester transfer protein levels and risk factor profile in patients with familial hypercholesterolemia. Atherosclerosis. 2004; 173: 261-7.
Zeller M, Masson D, Farnier M, Lorgis L, Deckert V, Pais de Barros JP, et al. High serum cholesteryl ester transfer rates and small high-density lipoproteins are associated with young age in patients with acute myocardial infarction. J Am Coll Cardiol. 2007; 50: 1948-1955.
Boekholdt SM, Kuivenhoven JA, Wareham NJ, Peters RJ, Jukema JW, Luben R, et al. Plasma levels of cholesteryl ester transfer protein and the risk of future coronary artery disease in apparently healthy men and women: the prospective EPIC (European Prospective Investigation into Cancer and Nutrition)-Norfolk population study. Circulation. 2004; 110: 1418-23.
Goto A, Sasai K, Suzuki S, Fukutomi T, Ito S, Matsushita T, Okamoto, et al. Cholesteryl ester transfer protein and atherosclerosis in Japanese subjects: a study based on coronary angiography. Atherosclerosis. 2001; 159: 153-63.
Borggreve SE, Hillege HL, Wolffenbuttel BH, de Jong PE, Zuurman MW, van der Steege G, et al. An increased coronary risk is paradoxically associated with common cholesteryl ester transfer protein gene variations that relate to higher high-density lipoprotein cholesterol: a population-based study. J Clin Endocrinol Metab. 2006; 91: 3382-8.
Marschang P, Sandhofer A, Ritsch A, Fiser I, Kvas E, Patsch JR. Plasma cholesteryl ester transfer protein concentrations predict CV events in patients with coronary artery disease treated with pravastatin. J Intern Med. 2006; 260: 151-9.
Hibino T, Sakuma N, Sato T. Higher level of plasma cholesteryl ester transfer activity from high-density lipoprotein to apo B-containing lipoproteins in subjects with angiographically detectable coronary artery disease. Clin Cardiol. 1996; 19: 483- 6.
de Vries R, Perton FG, Dallinga-Thie GM, van Roon AM, Wolffenbuttel BH, et al. Plasma cholesteryl ester transfer is a determinant of intima-media thickness in type 2 diabetic and nondiabetic subjects: role of CETP and triglycerides. Diabetes. 2005; 54: 3554-9.
Aviram M, Rosenblat M, Bisgaier CL, Newton RS, Primo-Parmo SL, La Du BN. Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions: a possible peroxidative role for paraoxonase. J Clin Invest. 1998; 101: 1581-90.
Mackness B, Davies GK, Turkie W, Lee E, Roberts DH, Hill E, et al. Paraoxonase status in coronary heart disease: are activity and concentration more important than genotype? Arterioscler Thromb Vasc Biol. 2001; 21: 1451-7.
Eckerson HW, Wyte CM, La Du BN. The human serum paraoxonase/arylesterase polymorphism. Am J Hum Genet. 1983; 35: 1126-38.
Shih DM, Xia YR, Wang XP, Miller E, Castellani LW, Subbanagounder G, et al. Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis. J Biol Chem. 2000; 275: 17527-35.
Tward A, Xia YR, Wang XP, Shi YS, Park C, Castellani LW, et al. Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. Circulation. 2002; 106: 484-90.
Mackness B, Durrington P, McElduff P, Yarnell J, Azam N, Watt M, Mackness M. Low paraoxonase activity predicts coronary events in the Caerphilly Prospective Study. Circulation. 2003; 107: 2775-9.
Van Lenten BJ, Wagner AC, Anantharamaiah GM, Garber DW, Fishbein MC, Adhikary L, et al. Influenza infection promotes macrophage traffic into arteries of mice that is prevented by D-4F, an apolipoprotein A-I mimetic peptide. Circulation. 2002; 106: 1127-32.
Navab M, Hama SY, Hough GP, Subbanagounder G, Reddy ST, Fogelman AM. A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids. J Lipid Res. 2001; 42: 1308-17.
Nicholls SJ, Lundman P, Harmer JA, Cutri B, Griffiths KA, Rye KA, et al. Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function. J Am Coll Cardiol. 2006; 48: 715-20.
Yuhanna IS, Zhu Y, Cox BE, Hahner, LD, Osborne-Lawrence S, Lu P, et al. 2001. High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med. 7: 853-7.
Kuhn FE, Mohler ER, Satler LF, Reagan K, Lu DY, Rackley CE. Effects of high density lipoprotein on acetylcholine induced coronary vasoreactivity. Am J Cardiol. 1991; 68: 1425-30.
Calabresi L, Gomaraschi M, Franceschini G. Endothelial protection by high-density lipoproteins: from bench to bedside. Arterioscler Thromb Vasc Biol. 2003; 23: 1724-31.
Nofer JR, van der Giet M, Tolle M, Wolinska I, von Wnuck Lipinski K, et al. HDL induces NO dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest. 2004; 113: 569-81.