2007, Número 3
<< Anterior Siguiente >>
Rev Neurol Neurocir Psiquiat 2007; 40 (3)
Terapia celular y aplicación de células madre en la enfermedad de Parkinson (Revisión)
González-López GM, Sosa-Luna CA, Juárez-Maldonado JL, Trejo-Bahena NI, Núñez-Sánchez M, Sánchez-González DJ
Idioma: Español
Referencias bibliográficas: 67
Paginas: 80-91
Archivo PDF: 221.49 Kb.
RESUMEN
La enfermedad de Parkinson (EP) es una degeneración neuronal crónica del núcleo estriado con déficit en la síntesis de dopamina (C
6H
3(OH)
2-CH
2-CH
2-NH
2) y trastorno del movimiento de origen multifactorial. El tratamiento farmacológico más eficaz es la administración oral de levodopa (L- 3,4-dihidroxifenilalanina), un precursor que se convierte en dopamina; sin embargo, a largo plazo aparecen complicaciones, como discinesias resistencia al fármaco. La terapia celular consiste en trasplantar células dopaminérgicas de diversas estirpes celulares como de la médula suprarrenal, tejido nervioso, cromafín, células mesencefálicas fetales, epitelio pigmentado de la retina y recientemente, aplicación de células madre embrionarias (stem cells) con capacidad para autorrenovarse y transformarse en diferentes tipos celulares especializados. Estas células pueden sobrevivir e integrarse funcionalmente en el núcleo estriado. El principal objetivo de la terapia celular consiste en reemplazar las células que se han degenerado por otras que puedan suplir su función.
REFERENCIAS (EN ESTE ARTÍCULO)
Sánchez-González DJ, Villanueva-López GC, Sosa-Luna CA, Orjuela-Henry DJ, Ortega-Rangel JA, Martínez-Martínez CM, Herrera-González NE. Óxido nítrico en el sistema nervioso central. Neuronas nitrérgicas. Neurol Neurocir Psiquiat 2004; 37: 73-8.
Taylor CA, Saint-Hilaire MH, Cupples LA, Thomas CA, Burchard AE, Feldman RG, Myers RH. Environmental, medical, and family history risk factors for Parkinson’s disease: a New England-based case control study. Am J Med Gen 1999; 88: 742-9.
Minguez-Castellanos A, Escamilla-Sevilla F. Cell therapy and other neuroregenerative strategies in Parkinson’s disease (I). Rev Neurol 2005; 41: 604-14.
Orozco-Ibarra M, Medina-Campos ON, Sanchez-Gonzalez DJ, Martýnez-Martýnez CM, Floriano-Sanchez E, Santamaria A, Ramirez V, Bobadilla NA, Pedraza-Chaverri J. Evaluation of oxidative stress in d-serine induced nephrotoxicity. Toxicology 2007; 229: 123-35.
Shahi GS, Moochhala SM. Smoking and Parkinson’s disease –a new perspective. Rev Environ Health 1991; 9: 123-36.
Checkoway H, Nelson LM. Epidemiologic approaches to the study of Parkinson’s disease etiology. Epidemiology 1999; 10: 327-36.
Zhang ZX, Roman GC. Worldwide occurrence of Parkinson’s disease: An updated review. Neuroepidemiology 1993; 12: 195-208.
Sveinbjornsdottir S, Hicks AA, Jonsson T, Petursson H, Gugmundsson G, Frigge ML, et al. Familial aggregation of Parkinson’s disease in Iceland. N Engl J Med 2000; 343: 1765-70.
Calne DB, Langston JW. Aetiology of Parkinson’s disease. Lancet 1983; 2: 457-9.
Li SC, Schoenberg BS, Wang CC, Cheng XM, Rui DY, Bolis CL, et al. A prevalence survey of Parkinson’s disease and other movement disorders in the People’s Republic of China. Arch Neurol 1985; 42: 655-7.
Preux PM, Condet A, Druet-Cabanac M, Debrock C, Macharia W, Couratier P, et al. Parkinson’s disease and environmental factors. Neuroepidemiology 2000; 19: 333-7.
Langston JW, Ballard PA Jr. Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. N Engl J Med 1983; 309: 310.
Soto-Otero R, Méndez-Álvarez E, Sánchez-Sellero I, Cruz-Landeira A, López-Rivadulla M, Lamas M. Reduction of rat brain levels of the endogenous dopaminergic proneurotoxins 1,2,3,4-tetrahydroisoquinoline and 1,2,3,4-tetrahydro-beta-carboline by cigarette smoke. Neurosci Lett 2001; 298: 187-90.
Jenner P. Oxidative damage in neurodegenerative disease. Lancet 1994; 344: 796-8.
Logroscino G, Marder K, Cote L, Tang M-X, Shea S, Mayeux R. Dietary lipids and antioxidants in Parkinson’s disease. A population-based, case-control study. Ann Neurol 1996; 39: 89-94.
Matsumine H, Saito M, Shimoda S, Tanaka H, Ishikawa A, Nakagawa-Hattori Y, et al. Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27. Am J Hum Genet 1997; 60: 588-96.
Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998; 392: 605-8.
Periquet M, Latouche M, Lohmann E, Rawal N, De Michele G, Ricard S, et al. Parkin mutations are frequent in patients with isolated early-onset parkinsonism. Brain 2003; 126: 1-8.
Valente EM, Bentivoglio AR, Dixon PH, Ferraris A, Ialongo T, Frontali M, et al. Localization of a novel locus for autosomal recessive early onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet 2001; 68: 895-900.
Van Duijn CM, Dekker MC, Bonifati V, Galjaard RJ, Houwin-Duistermaat JJ, Snijders PJLM, et al. Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am J Hum Genet 2001; 69: 629-34.
Bonifati V, Rizzu P, Van Baren MJ, Schaap O, Breedveld GJ, Krieger E, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset Parkinsonism. Science 2003; 299: 256-9.
Najim al-Din AS, Wriekat A, Mubaidin A, Dasouki M, Hiari M. Pallido-pyramidal degeneration, supranuclear upgaze paresis and dementia: Kufor-Rakeb syndrome. Acta Neurol Scand 1994; 89: 347-52.
Hampshire DJ, Roberts E, Crow Y, Bond J, Mubaidin A, Wriekat AL, et al. Kufor-Rakeb syndrome, pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to 1p36. J Med Genet 2001; 38: 680-2.
Nakao N, Kakishita K, Uematsu Y, Yoshimasu T, Bessho T, Nakai K, et al. Enhancement of the response to levodopa therapy after intraestriatal transplantation of autologous sympathetic neurons in patients with Parkinson disease. J Neurosurg 2001; 95: 275-84.
Kim JH, Auerbach JM, Rodríguez-Gómez JA, Velasco I, Gavin D, Lumelsky N, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 2002; 418: 50-6.
Hideki H, Hashimoto M, Fujimoto I, Nakajima K, Shimano Y, Nagatsu T, et al. Dopa-producing astrocytes generated by adenoviral transduction of human tyrosine hydroxilase gene: in vitro study and transplantation to hemaparkinsonian model rats. Neurosci Res 1999; 35: 101-12.
Aguilera-Hernández P, Chánez-Cárdenas ME, Floriano-Sánchez E, Barrera D, Santamaría A, Sánchez-González DJ, Pérez-Severiano F, Pedraza-Chaverrí J, Maldonado PD. Time-related changes in constitutive and inducible nitric oxide synthases in a model of Huntington’s disease. Neurotoxicology 2007 (In Press).
Björklund A, Stenevi U. Reconstruction of the nigrostrial dopamine pathway by intracereblar nigral transplants. Brian Res 1979; 177: 555-60.
Perlow MJ, Freed WJ, Hoffer BJ, Seiger Å, Olson L, Wyatt RJ. Brian grafts reduce reduce motor abnormalities produced by destruction of nigrostrial dopamine system. Science 1979; 204: 643-7.
Kordower HJ, Fiandaca MS, Notter MFD, Hansen JT, Gash DM. NKF-like trophic support from peripherial nerve for grafted rhesus adrenal chromaffin cells. J Neurosurg 1990; 73: 418-28.
Björklund A, Stenevi U, Dunnett SB, Iversen SD. Functional reactivation of the deafferented neostriatum by nigral transplans. Nature 1981; 289: 497-9.
Bohn MC, Cupit LC, Marciano F, Gash DM. Adrenal medullary grafts enhance recovery of striatal dopaminergic fibers. Science 1987; 237: 913-6.
Bolam JP, Freund TF, Björklund A, Dunnett SB, Smith AD. Synaptic input and local output of dopaminergic neurons in grafts that functionally reinnervate the host striatum. Exp Brain Res 1987; 68: 131-46.
Dunnett SB, Björklund A. Prospects for new restorative and neuroprotective treatments in Parkinson’s disease. Nature 1999; 399: A32-A39.
Madrazo I, Drucker-Colin R, Diaz V, Martinez-Mata J, Torres C, Becerril J. Open microsurgical autograft of the adrenal magulla to the rigth caudate nucleus in two patients with intractable Parkinson’s disease. N Engl J Med 1987; 316: 831-4.
Jiao SS, Ding YJ, Zhang GF, Zhang ZM, et al. Adrenal madullary autografts in patients with Parkinson’s disease. N Engl J Med 1989; 321:324-5.
Hagell P, Piccini P, Björlund A, Brundin P, Rehncrona S, Widner H, et al. Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci 2002; 5: 627-8.
Minguez-Castellanos A, Escamilla-Sevilla F. Cell therapy and other neuroregenerative strategies in Parkinson’s disease (II). Rev Neurol 2005; 41: 684-93.
Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, et al. Grafts of fetal dopamine neurons survives and improve motor function in Parkinson’s disease. Science 1990; 247: 574-7.
Madrazo I, Franco-Bourland R, Ostrosky-Solis F, Aguilera M, Cuevas C, Zamorano C, et al. Fetal homotransplants (ventral mesencephalo and adrenal tissue) to the striatum of parkinsonian subject. Arch Neurol 1990: 47: 1281-5.
Widner H, Tetrud J, Rehncrona S, Snow BJ, Brundin P, Gustavii B, et al. Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by MPTP. N Engl J Med 1992; 26: 1556-63.
Kordower JH, Freeman TB, Snow BJ, Vingerhoets FJG, Mufson EJ, Sanberg PR, et al. Neuropathological evidence of graft survival and striatal reinervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med 1995; 332: 1118-24.
Dunnet SB, Björlund A, Lindvall O. Cell therapy in Parkinson’s disease: stop or go? Nature Rev Neurosci 2001; 2: 365-9.
Piccini P, Pavese N, Hagell P, Reimer J, Bjorklund A, Oertel WH, Quinn NP, Brooks DJ, Lindvall O. Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain 2005; 128: 2977-86.
Thompson L, Barraud P, Andersson E, Kirik D, Bjorklund A. Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections. J Neurosci 2005; 25: 6467-77.
Pacheco-Ramírez MA, Rodríguez-Perales MA, López-Chavira A, Canul-Andrade LP, Martínez-Martínez CM, Sánchez-González DJ. Expresión de las sintasas de óxido nítrico en tumores glómicos de cabeza y cuello. Rev Sanid Milit Mex 2006; 60(6): 369-78.
Sánchez-González DJ, Trejo-Bahena NI. Prácticas de Histología. México: Editorial Alfil; 2006.
Itakura T, Uematsu Y, Nakao N, Nakai E, Nakai K. Transplantation of autologous sympathetic ganglion into the brain with Parkinson’s disease: long-term follow-up of 35 cases. Stereotact Funct Neurosurg 1997; 69: 112-5.
Espejo EF, González-Albo MC, Moraes JP, El Banoua F, Flores JA, Caraballo I. Functional regeneration in a rat Parkinson’s model alter intrastriatal grafts of GDNF and TGF-b1-expressing extra-adrenal chromaffin cells of the Zuckerkandl’s organ. J Neurosci 2001; 21: 9888-95.
Segovia J, Vergara P, Brenner M. Astrocyte-specific expression of tyrosine hydroxylase after intracerebral gene transfer induces behavioural recovery in experimental parkisonism. Gene Ther 1998; 5: 1650-5.
Björklund LM, Sánchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KSP, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 2002; 99: 2344-9.
Wakayama T, Tabar V, Rodríguez I, Perry AC, Studer L, Mombaerts P. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 2001; 292: 740-3.
Storch A, Paul G, Csete M, Boehm BO, Carvey PM, Kupsh A, et al. Long-term proliferation and dopaminergic differentiation of human mesencephalic neural precursor cells. Exp Neurol 2001; 170: 317-25.
Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz- González XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41-9.
Maslov AY, Barone TA, Plunkett RJ, Pruitt SC. Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J Neurosci 2004; 24: 1726-33.
Watts RL, Raiser CD, Stover NP, Cornfeldt ML, Schweikert AW, Allen RC, et al. Stereotaxic intraestriatal implantation of human retinal pigment epithelial cells attached to gelatine microcarriers: a potential new cell therapy for Parkinson’s disease. J Neural Transm Suppl 2003; 65: 215-27.
Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993; 260: 1130-2.
Freed WJ, Morihisa JM, Spoor E, Hoffer BJ, Olson L, Seiger A, Wyatt RJ. Transplanted adrenal chromaffin cells in rat brain reduce lesion induced rotational behavior. Nature 1981; 292: 351-2.
Shen Y, Muramatsu SI, Ikeguchi K, Fujimoto KI, Fan DS, Ogawa M, et al. Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson’s disease. Hum Gene Ther 2000; 11: 1509-19.
Leff SE, Rendahl KG, Spratt SK, Kang UJ, Mandel RJ. In vivo LDOPA production by genetically modified primary rat fibroblast or gliosarcoma cell grafts via coexpression of GTP cyclohydrolase I with tyrosine hydroxylase. Exp Neurol 1998; 151: 249-64.
Bankiewicz KS, Eberling JL, Kohutnicka M, Jagust W, Pivirotto P, Bringas J, et al. Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 2000; 164: 2-14.
Mochizuki H, Mizuno Y. Gene therapy for Parkinson’s disease. J Neural Transm Suppl 2003; 65: 205-13.
Luo J, Kaplitt MG, Fitzsimons HL, Zuzga DS, Liu Y, Oshinsky ML, et al. Subthalamic GAD gene therapy in a Parkinson’s disease rat model. Science 2002; 298: 425-9.
Cortez N, Trejo F, Vergara P, Segovia J. Primary astrocytes retrovirally transduced with a tyrosine hydroxylase transgene driven by a glial-specific promoter elicit behavioural recovery in experimental parkisonism. J Neurosci Res 2000; 59: 39-46.
National Institute of Health. Stem cells: scientific progress and future research directions. Rebuilding the nervous system with stem cells. National Institute of Health 2001; 77-85.
Lindvall O, Bjorklund A. Cell therapy in Parkinson’s disease. NeuroRx 2004; 1: 382-93.
Kirik D, Bjorklund A. Histological analysis of fetal dopamine cell suspension grafts in two patients with Parkinson’s disease gives promising results. Brain 2005; 128: 1478-9.