2005, Número 2
<< Anterior Siguiente >>
Rev Inst Nal Enf Resp Mex 2005; 18 (2)
Componentes glicosilados de la envoltura de Mycobacterium tuberculosis que intervienen en la patogénesis de la tuberculosis
Gorocica P, Jiménez-Martínez MC, Garfias Y, Sada I, Lascurain R
Idioma: Español
Referencias bibliográficas: 63
Paginas: 142-153
Archivo PDF: 212.77 Kb.
RESUMEN
Los componentes glicosilados de la envoltura de Mycobacterium tuberculosis tienen un papel importante en la inmunopatogénesis de la tuberculosis. Permiten la adhesión, penetración y persistencia de la micobacteria en el macrófago; de igual manera, participan en los mecanismos de activación de estas células y la producción de citocinas relevantes durante la respuesta inmune. En esta revisión, examinamos las características de las principales estructuras sacarídicas de la superficie de la micobacteria y su relación con la modulación de la respuesta inmune.
REFERENCIAS (EN ESTE ARTÍCULO)
Bloom BR, Murray CJ. Tuberculosis: commentary on a reemergent killer. Science 1992;257:1055-1064.
Wolinsky E. Mycobacterium. En: Davis B, Dublecco R, Eisen H, Ginisber H, editores. Tratado de microbiología. 3ra ed. México: Salvat;1990.p.589-604.
Ernst JD. Macrophage receptors for Mycobacterium tuberculosis. Infect Immun 1998; 66:1277-1281.
Zimmerli S, Edwards S, Ernst JD. Selective receptor blockade during phagocytosis does not alter the survival and growth of Mycobacterium tuberculosis in human macrophages. Am J Respir Cell Mol Biol 1996;15:760-770.
Schlesinger LS. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol 1993;150:2920-2930.
Fenton MJ, Vermeulen MW. Immunopatology of tuberculosis: roles of macrophages and monocytes. Infect Immun 1996;64:683-690.
Schlesinger LS. Role of mononuclear phagocytes in M. tuberculosis pathogenesis. J Investig Med 1996;44: 312-323.
Schorey JS, Carroll MC, Brown EJ. A macrophage invasion mechanism of phatogenic mycobacteria. Science 1997;277:1091-1093.
Draper P. The outer parts of the mycobacterial envelope as permeability barriers. Front Biosci 1998;3:1253-1261.
Besra GS, Chatterjee J. Lipids and carbohydrates of Mycobacterium tuberculosis. In: Bloom BR, editor. Tuberculosis: pathogenesis, protection, and control. Washington, DC: ASM Press;1994.p.285-306.
Warwick JB, Paul W, Winter N. Mechanisms of persistence of mycobacteria. Trends Microbiol 1994;2:284-288.
Brennan PJ. Structure of mycobacteria: recent developments in defining cell wall carbohydrates and proteins. Rev Infect Dis 1989;11 Suppl 2:420-430.
Steck PA, Schwartz MS, Rosendhal G, Gray R. Mycolic acids: a reinvestigation. J Biol Chem 1978;253:5625-5709.
Crick DC, Mahapatra S, Brennan PJ. Biosynthesis of the arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis. Glycobiol 2001;11:107R-118R.
Varki A, Cumming R, Esko J, Freeze H, Hart G, Marth J. Editors, Bacterial polysaccharides. In: Essential of glycobiology. NY: Cold Spring Habor Press;1999.p.321-332.
Ehlers MR, Daffe M. Interactions between Mycobacterium tuberculosis and host cells: are mycobacterial sugars the key? Trends Microbiol 1998;6:328-335.
Schabbing RW, Garcia A, Hunter RL. Characterization of the trehalose 6,6’-dimycolate surface monolayer by scanning tunneling microscopy. Infect Immun 1994;62:754-756.
Vergne I, Daffe M. Interaction of mycobacterial glycolipids with host cells. Front Biosci 1998;3:d865-d876.
Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem 1995;64:29-63.
Barnes PF, Chatterjee D, Abrams JS, Lu S, Wang E, Yamamura M, et al. Cytokine production induced by Mycobacterium tuberculosis lipoarabinomannana. Relationship to chemical structure. J Immunol 1992;149: 541-547.
St-Denis A, Caouras V, Gervais F, Descoteaux A. Role of protein kinase C a in the control of infection by intracellular pathogens in macrophage. J Immunol 1999;163:5505-5511.
Tan SL, Parker PJ. Emerging and diverse roles of protein kinase C in immune cell signalling. Biochem J 2003;376(Pt 3):545-552.
Varcellone A, Nigou J, Puzo G. Relationships between the structure and the roles of lipoarabinomannans and related glycoconjugates in tuberculosis pathogenesis. Front Biosci 1998;3:149-163.
Brennan PJ. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2003;83:91-97.
Mathews CH, van Holde K, Ahern K. Metabolismo lipídico II. Lípidos de membrana, esteroides, isoprenoides y eicosanoides. En: Mathews CH, van Holde K, Ahern K, editores. Bioquímica. 3ra ed. Madrid: Pearson Educación;2002.p.747-788.
Schlesinger LS, Hull SR, Kaufman TM. Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J Immunol 1994;152:4070-4079.
Sthal PD, Ezekowitz RA. The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol 1998;10:50-55.
Schlesinger LS, Kaufman TM, Lyer S, Hull SR, Marchiando LK. Differences in mannose receptor-mediated uptake of lipoarabinomannan from virulent and attenuated strains of Mycobacterium tuberculosis by human macrophages. J Immunol 1996;157:4568-4575.
Riedel DD, Kaufmann SH. Differential tolerance induction by lipoarabinomannan and lipopolysaccharide in human macrophages. Microbes Infect 2000;2:463-471.
Cywes C, Hoppe HC, Daffe M, Ehlers MR. Nonopsonic binding of Mycobacterium tuberculosis to complement receptor type 3 is mediated by capsular polysaccharides and is strain dependent. Infect Immun 1997;65:4258-4266.
Astarie-Dequeker C, N’Diaye EN, Le Cabec V, Ritting MG, Prandi J, Maridonneau-Parini I. The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect Immun 1999;67:469-477.
Schlesinger LS. Entry of Mycobacterium tuberculosis into mononuclear phagocytes. Curr Top Microbiol Immunol 1996;215:71-96.
Schlesinger LS, Bellinger-Kawahara CG, Payne NR, Horwitz MA. Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol 1990;144:2771-2780.
Schreiber S, Perkins SL, Teitelbaum SL, Chappel J, Sthal PD, Blum JS. Regulation of mouse bone marrow macrophage mannose receptor expression and activation by prostaglandin E and IFN-gamma. J Immunol 1993;151:4973-4981.
Mueller-Ortiz S, Sepulveda E, Olsen M, Jagannath Ch, Wanger A, Norris S. Decreased infectivity despite unaltered C3 binding by a HbhA mutant of Mycobacterium tuberculosis. Infect Immun 2002;70:6751-6760.
Blanchard DK, Michelini-Norris MB, Pearson CA, McMillen S, Djeu JY. Production of granulocyte-macrophage colony-stimulating factor (GM-CSF) by monocytes and large granular lymphocytes stimulated with Mycobactrium avium- M. intracellulare: activation of bactericidal activity by GM-CSF. Infect Immun 1991;59:2396-2402.
Chatterjee D, Robert AD, Lowell R, Brenann PJ, Orme IM. Structural basis of capacity of lipoarabinomanan to induce secretion to tumor necrosis factor. Infect Immun 1992;60:1249-1253.
Kaufmann SH. Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis 2002;61 Suppl 2:ii54-ii58.
Chan J, Kaufmann SHE. Immune mechanisms of protection. In: Bloom BR, editor. Tuberculosis: pathogenesis, protection, and control. Washington, DC: ASM Press;1994.p.389-415.
Adams LB, Fukutomi Y, Krahenbuhl JL. Regulation of murine macrophage effector function by lipoarabinomannana from mycobacterial strain whit different degrees of virulence. Infect Immun 1993;61:4173-4181.
Abbas AK, Lichtman AH, Pober JS. Cellular and molecular immunology. 5th ed. Philadelphia: Elsevier/Saunders;2004.p.275-308.
Nigou J, Zelle-Rieser C, Gilleron M, Thurnher M, Puzo G. Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: Evidence for a negative signal delivered through the mannose receptor. J Immunol 2001;166:7477-7485.
Anthony LS, Chatterjee D, Brennan PJ, Nano FE. Lipoarabinomannana from Mycobacterium tuberculosis modulate the generation of reactive nitrogen intermediates by gamma interferon-activated macrophages. FEMS Immunol Med Microbiol 1994;8:299-305.
Billingslea BJ, Blumenthal RL, Seetoon KF, Simons ER, Fenton MJ. Differential response of human mononuclear phagocytes to mycobacterial lipoarabinomannan: role of CD14 and mannose receptor. Infect Immun 1998;66:28-35.
Ziegler-Heitbrock HWL, Ulevitch RJ. CD14: Cell surface receptor and differentiation marker. Immunol Today 1993;14:121-125.
Pugin J, Heumann ID, Tomasz A, et al. CD14 is a pattern recognition receptor. Immunity 1994;1:509-516.
Means TK, Lien E, Yoshimura A, Wang S, Golenbock DT, Fenton MJ. The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J Immunol 1999;163:6748-6755.
Asselineau J, Laneelle J. Mycobacterial lipids: a historical perspective. Front Biosci 1998;3:164-174.
Jiménez-Martínez MC, Báez R, Linares M, Chávez R, Lascurain R, Zenteno E. Avances en el estudio de los mecanismos celulares de supresión de la respuesta inmunitaria en la tuberculosis. Rev Inst Nal Enf Resp Mex 2001;14:39-48.
Beckman EM, Porcelli SA, Morita CT, Behar SM, Furlong ST, Brenner MB. Recognition of lipid antigen by CD1-restricted ab+ T cells. Nature 1994; 372:691-694.
Boom WH, Chervenak KA, Mincek MA, Ellner JJ. Role of the mononuclear phagocyte as an antigen-presenting cell for human gdT cells activated by live Mycobacterium tuberculosis. Infect Immun 1992;60:3480-3488.
Prigozy TI, Sieling P, Clemens D, et al. The mannose receptor delivers lipoglycan antigens to endosites for presentation to T cells by CD1b molecules. Immunity 1997;6:187-197.
Burden N, Brassy L, Rosenberg M. Immunization with alpha-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. Eur J Immunol 1999;29:2014-2025.
Sada-Ovalle I, Torre-Bouscoulet L, Jimenez-Martinez M del C, Martinez-Cairo S, Zenteno E, Lascurain R. CD1 pathway and NK T cell activation to glycolipid antigens from Mycobacterium tuberculosis. Gac Med Mex 2005;141: 35-41.
Mogga SJ, Mustafa T, Sviland L, Nilsen R. Increased Bcl-2 and reduced Bax expression in infected macrophages in slowly progressive primary murine Mycobacterium tuberculosis infection. Scand J Immunol 2002;56:383-391.
Maiti D, Brattachatyya A, Basuu J. Lipoarabinomannana from Mycobacterium tuberculosis promote macrophage survival by phosforylating Bad, though a phosphatidyl inositol 3-kinase/Akt pathway. J Biol Chem 2001;276:329-333.
Brightbill HD, Libraty DH, Krutzik SR, et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 1999;285:732-736.
Yang RB, Mark MR, Gray A, et al. Toll-like receptor-2 mediates lipopolysacharide-induced cellular signalling. Nature 1998;395:284-288.
Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388:394-397.
Bulut Y, Faure E, Thomas L, Equils O, Arditi M. Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol 2001;167:987-994.
Stenger S, Modlin RL. Control of Mycobacterium tuberculosis through mammalian Toll-like receptors. Curr Opin Immunol 2002;14:452-457.
Krieger M, Herz J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem 1994;63:601-637.
Dunne DW, Resnick D, Grenberg J, Krieger M, Joiner KA. The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci 1994;91:1863-1867.