2009, Número 1
<< Anterior Siguiente >>
Rev Fac Med UNAM 2009; 52 (1)
Infecciones causadas por Chlamydia trachomatis
Cervantes GE
Idioma: Español
Referencias bibliográficas: 43
Paginas: 18-22
Archivo PDF: 110.81 Kb.
FRAGMENTO
Introducción
Los miembros de la familia Chlamydiaceae son patógenos que infectan un amplio rango de organismos, así como una variedad de protistas como la amiba de vida libre causante de infecciones cerebrales Acanthamoeba.
Chlamydia trachomatis es una bacteria intracelular obligada, considerada uno de los patógenos de transmisión sexual prevalentes en el mundo. Las infecciones urogenitales causadas por C. trachomatis cursan con múltiples manifestaciones clínicas incluyendo cervicitis, uretritis y enfermedad inflamatoria pélvica que puede conducir a abortos e infertilidad; no obstante, la infección puede ser asintomática hasta en 80% de los casos.
REFERENCIAS (EN ESTE ARTÍCULO)
Moulder JW. Orden chlamydiales and family Chlamydiaceae, Bergey’s Manual of Systematic Bacteriology V:1, Williams & Wilkins, Co.
Center for Disease Control and Prevention. Guidelines for treatment of sexually transmitted disease. Morbility and Mortality Weekly reports 1998; 42 (No.RR14): 1-102.
Everett K. IV Encuentro de la Sociedad Europea de Investigaciones en Chlamydias. Helsinki, Finlandia 2002.
Mandell GL, Bennett JE, Dolin R. Principles and practice of infectious diseases. 6th edition. Churchill Livingstone, 2004.
Murray PR. Manual of clinical microbiology. Ed 8th. Washington 2003 ASM.
Bush RM, Everett KD. Molecular evolution of the Chlamydiaceae. International Journal of Systematic and Evolutionary Microbiology 2001; 51: 203-220.
Schachter J. Biology of Chlamydia trachomatis. In: Holmes KK et al. Sexually transmitted diseases. 3rd ed. New York: McGraw-Hill.1999.
Gerard HC, Freise J, Wang Z. Chlamydia trachomatis genes whose products are related to energy metabolism are expressed differentially in active vs persistent infection. Microbes Infection 2002: 4; 13-22.
McCarty F. Chlamydial metabolism as inferred from the complete genome sequence: In: Chlamydia: Intracellular biology, pathogenesis and immunity. Wilwy, New York. 1999.
Naaheimo H, Kosma P, Brade L, Brade H, Peters I. Mapping the binding of synthetic disaccharides representing epitopes of Chlamydial lipopolysaccharide to antibodies with NMR. Biochem 1999: 89; 3240-3248.
Raulton J. Chlamydial envelope components and pathogen host cell interaction. Mol Microb 1995; 15: 607-616.
Nicholson SE. New view of the surface projections of Chlamydia trachomatis. J Bacteriol 1998; 5: 343-349.
Raulton J. Localization of Chlamydia trachomatis heat shock protein 60 and 70 during infection of a human endometrial epithelial cell line in vitro. Infect Immun 1998; 66: 2323-2329.
Wyrick PB. Cell biology of chlamydial infections: Proceedings of 9th. International Chlamydia Symposium. San Francisco, 1998: 69-78.
Stephens R, Kalman S, Lamel C, Fan J, Marathe R. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 1998; 282: 754-759.
Washington WJr, Allen S, Janda W, Koneman E. Koneman’s Color Atlas and Textbook of Diagnostic Microbiology. 6th edition. Lippincott Williams & Wilkins.
Watson MW, Lambden PR, Clarke N. Genetic diversity and identification of human infection by amplification of the Chlamydial 60 kilodalton cysteine rich outer membrane protein gene. J Clin Microbiol 1991; 29: 1188-1193.
Frost E, Delandes S, Veileux S. Boirgaux-Ranvisy D. Typing Chlamydia trachomatis by detection of restriction fragment length polymorphism in the gene encoding the major outer membrane protein. J Infect Dis 1991; 172: 1013-1022.
Stothard DR, Boguslawski G, Jones RB. Phylogenetic analysis of the Chlamydia trachomatis major outer membrane protein and examination of potential pathogenic determinants. Infect Immun 1998; 66: 361803625.
Kalman S, Mitchell W, Marathe R, Lammel C, Fan J. Comparative genomes of Chlamydia pneumoniae and trachomatis. Nature Genetics 1999; 21: 385-389.
Raulton J. Localization of Chlamydia trachomatis heat shock protein 60 and 70 during infection of human endometrial epithelial cell line in vitro. Infect Immun 1998; 66: 2323-2329.
Stephen RS, Sanchez-Pescador R, Wagar EA. Diversity of Chlamydia trachomatis major outer membrane protein genes. J Bacteriol 1987; 169: 3879-3885.
Makarova KS, Aravind L, Koonin EV. A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends Bioch Sci 2000; 25: 50-52.
Andrew D, Pumarola S, Sanz C. Prevalencia de infección por Chlamydia trachomatis determinada mediante métodos de biología molecular. Enfermedades infecciosas. Microbiología Clínica 2002; 20: 205-207.
Stamm W. Chlamydia trachomatis infections: Progress and problems. J Infect Dis 1999; 179: 5380-5383.
Black C. Current methods of laboratory diagnosis of Chlamydia trachomatis infection. Clin Microbiol Rev 1997; 10: 160-184.
Tanaka M, Nakayama H, Saguyama K, Haraoka M. Evolution of a new amplified enzyme immunoassay (EIA) for detection of Chlamydia trachomatis in male urine female endocervical swab, and patients obtained vaginal swab specimens. J Clin Pathol 2000; 53: 350-354.
Jaug D, Sellers W, Mahoney JB, Pickard L. Effects of broadening the gold standard on the performance of a chemiluminimetric immunoassay (Magic Lite) to detect Chlamydia trachomatis antigens in centrifuged first voide urine and urethral swabs for men. Sex Transm Dis J 1992; 19: 315-319.
McComb DE, Puzimiak CI. Microcell culture method for isolation of Chlamydia trachomatis. Appl Microbiol 1974; 28: 727-729.
Rota RT, Nichols RL. Chlamydia trachomatis in cell culture: I comparison of efficiencies of infection in several chemically defined media at various pH and temperature values and after exposure to diethylaminoetyl-Dextran. Appl Microbiol 1973; 26: 560-565.
Rota RT, Nichols RL. Comparison of HeLa 229 and McCoy cell cultures for detection of Chlamydia trachomatis in clinical specimens. J Clin Microbiol 1989; 27: 1399-1400.
Hartley JC. PCR detection and molecular identification of Chlamydiaceae species. J Clin Microbiol 2001; 39: 3072-2079.
Altwegg M. Comparison of Gene Probe PACE 2, Amplicor Roche. And conventional PCR for the detection of Chlamydia trachomatis in genital specimens. Med Microbiol Lett 1999; 3: 181-187.
van der P. Multicenter evaluation of the AMPLICOR and automated COBAS AMPLICOR CT/NG tests for detection of Chlamydia trachomatis. J Clin Microbiol 2000; 38: 1105-1112.
Joyner J, Douglas J, Foster M. Persistence of Chlamydia trachomatis infection detected by polymerase chain reaction untreated patients. Sex Trans Dis 2002; 25: 196-200.
Chornesky M, Jang D, Lee H. Diagnosis of Chlamydia trachomatis infection in men and women by testing first void urine by ligase reaction. J Clin Microbiol 2002; 32: 682-685.
Zhang JP, Stephens S. Mechanisms of Chlamydia trachomatis attachment to eukaryotic cells. Cell 1992; 69: 861-869.
Peterson E, Darrow V, Blanching J, Aarnaes S. Reproducibility problems with the AMPLICOR PCR Chlamydia trachomatis test. J Clin Microbiol 1997; 35: 957-959.
Hock E, Smith K, Mullin C. Diagnosis of genitourinary Chlamydia trachomatis infections by using the ligase chain reaction on patient obtained vaginal swabs. J Clin Microbiol 1997; 35: 277-284.
Chernesky M, Jang D, Lee H. Diagnosis of Chlamydia trachomatis infection in men and women by testing first void urine by ligase reaction. J Clin Microbiol 2002; 32: 682-685.
Verhoen V, Avonts D, Mehesus A. Chlamydial infections: an accurate model for opportunistic screening in general practice. Sex Transm Infect 2003; 79: 313-317.
Yang C, Maclean I, Brunhan R. DNA sequence polymorphism of Chlamydia trachomatis ompi gene. J Infect Dis 1993; 168: 1225-1230.
Bandea CI, Kubota K, Brown TM, Kilmarx PH. Typing of Chlamydia trachomatis strains from urine samples by amplification and sequencing the major outer membrane protein gene (ompI). Sex Trans Infect 2001; 77: 419-422.