2008, Número 1-2
<< Anterior
Microbiología 2008; 50 (1-2)
Inducción de apoptosis por especies del género Mycobacterium
Vega-Manríquez X, López-Vidal Y, Gutiérrez-Pabello JA
Idioma: Español
Referencias bibliográficas: 99
Paginas: 48-58
Archivo PDF: 210.56 Kb.
RESUMEN
La interacción entre hospedero y patógeno es un mecanismo dinámico donde el microorganismo utiliza diferentes estrategias para sobrevivir y multiplicarse en el individuo. El mecanismo de apoptosis ha sido considerado como parte de la respuesta inmune innata que el organismo utiliza para destruir agentes causantes de enfermedad, sin embargo también se ha observado que algunas bacterias tienen la capacidad de modular la apoptosis para persistir dentro de las células del hospedero. En la presente revisión se discute el proceso de apoptosis durante la interacción
Mycobacterium-células del hospedero con el objetivo de identificar el posible papel de la muerte celular programada en la patogenia de las enfermedades causadas por las especies del género
Mycobacterium.
REFERENCIAS (EN ESTE ARTÍCULO)
Alemán, M., A. García, M. A. Saab, et al. 2002. Mycobacterium tuberculosis-induced activation accelerates apoptosis in peripheral blood neutrophils from patients with active tuberculosis. Am. J. Respir. Cell. Mol. Biol. 27: 583-92.
Aliprantis, A. O., R. B. Yang, M. R. Mark, et al. 1999. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285: 736-9.
Alnemri, E. S., D. J. Livingston, D.W. Nicholson, et al. 1996. Human ICE/CED-3 protease nomenclature. Cell 87: 171.
Aranaz, A., D. Cousins, A. Mateos, et al. 2003. Elevation of Mycobacterium tuberculosis subsp. caprae Aranaz 1999 to species rank as Mycobacterium caprae comb. nov., sp. nov. Interna. J. Sist. Evolut. Mycobiol. 53: 1785-1789.
Arias M., M. Rojas, J. Zabaleta, et al.1997. Inhibition of virulent Mycobacterium tuberculosis by Bcg(r) and Bcg(s) macrophages correlates with nitric oxide production. J. Infect. Dis. 176: 1552-1558.
Balcewicz-Sablinska, M. K., J. Keane, H. Kornfeld, et al. 1998. Pathogenic Mycobacterium bovis evades apoptosis of host macrophages by release of TNF-a, resulting in inactivation of TNF-ñ. J. Immun. 161: 2636-2641.
Baran, J. K., W. Guzik, M. Hryniewicz, et al. 1996. Apoptosis of monocytes and prolonged survival of granulocytes as a result of phagocytosis of bacteria. Infect. Immun. 64: 4242-4248.
Barry, M., & G. McFadden. 1998. Apoptosis regulators from DNA viruses. Curr. Opin. Immunol. 10: 422-430.
Bhardwaj, A. & B. B. Aggarwal. 2003. Receptor-mediated choreography of life and death. J. Clin. Immunol. 23: 317-332.
Bhattacharyya, A., S. Pathak, C. Basak, et al. 2003. Execution of macrophage apoptosis by Mycobacterium avium trough apoptosis signal- regulating kinase 1/p38 mitogen-activated protein kinase signaling and caspase 8 activation. J. Biol. Chem. 29: 26517-26525.
Boldi, M. P., E. E. Varfolomeev, Z. Pancer, et al. 1995. A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J. Biol. Chem. 270: 7795-7798.
Boldi, M. P., T. M. Goncharov, Y. V. Goltsev, et al. 1996. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1 and TNF receptor-induced cell death. Cell 85: 803-815.
Caulin, C., G. S. Salvesen & R. G. Oshima. 1997. Caspase cleaage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J. Cell. Biol. 138:1397.
Chen, Y. & A. Zychlinsky. 1994. Apoptosis induced by bacterial pathogens. Microb. Pathog. 17:203-212.
Cheng, E. H., D. G. Kirsch, R. J. Clem, et al. 1997. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278: 1966-1968.
Chinnaiyan, A. M., O’Rourke, M. Tewari, et al. 1995. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81: 505-512.
Ciaramella, A., A. Martino, R. Cicconi, et al. 2000. Mycobacterial 19-kDa lipoprotein mediates Mycobacterium tuberculosis-induced apoptosis in monocytes/macrophages at early stages of infection. Cell. Death and Different. 7: 1270-1272.
Ciaramella, A., A. Cavone, M. B. Santucci, et al. 2002. Proinflammatory cytokines in the course of Mycobacterium tuberculosis-induced apoptosis in monocytes/macrophages. J. Infect. Dis. 186: 1277-82.
Dao, D. N., L. Kremer, Y. Guérardel, et al. 2004. Mycobacterium tuberculosis lipomannan induces apoptosis and interleukin-12 production in macrophages. Infect. Immun. 4: 2067-2074.
Desagher, S., A. Osen-Sand, A. Nichols, et al. 1999. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell Biol. 144: 891-901.
Du, C., M. Fang, Y. Li, et al. 2000. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33-42.
Duan, L., H. Gan, D. Golan, et al. 2002. Critical rol of mitochondrial damage in determining outcome of macrophages infection with Mycobacterium tuberculosis. J. Immunol. 169: 5181-5187.
Dürrbaum-Landmann I., J. Gercken, D. Flad, et al. 1996. Effect of in vitro infection of human monocytes with low numbers of Mycobacterium tuberculosis bacteria on monocyte apoptosis. Infect. Immun. 64: 5384-5389.
Edwars, K.M., M.H. Cynamon, R.K. Voladri, et al. 2001. Iron-cofactores superoxide dismutase inhibits hots responses to Mycobacterium tuberculosis. Am. J. Respir. Crit. Care Med. 164: 2213-2219.
Enari, M., H. Sakahira, H. Yokoyama, et al. 2000. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998; 391: 43-50.
Eskes, R., S. Desagher, B. Antonsson, et al. 2000. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell. Biol. 20: 929.
Ferrari, G., H. Langen, M. Naito, et al. 1999. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97: 435-47.
Flynn, J. L., M. M. Goldstein, J. Chan, et al. 1995. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity. 6: 561-572.
Fratazzi, C., R. D. Arbeit, C. Carini, et al. 1997. Programmed cell death of Mycobacterium avium serovar 4-infected human macrophages prevent the Mycobacterium from spreading and induces micobacterial growth inhibition by freshly added, infected macrophages. J. Immunol. 158: 4320-4327.
Gil, D., L. F. García & M. Rojas. 2003. Modulation of macrophages apoptosis by antibacterial therapy physiological role of apoptosis in the control of Mycobacterium tuberculosis. Toxicol. Appl. Pharma. 190: 111-119.
Guérardel, Y., E. Maes, V. Briken, et al. 2003, Lipomannan and lipoarabinomannan from a clinical isolate of Mycobacterium kansasii: novel structural features and apoptosis-inducing properties. Biol. Chem. 278: 36637-51.
Gutiérrez-Pabello, J. A., D. N. McMurray & L. G. Adams. 2002. Upregulation of thymosin b-10 by of Mycobacterium bovis infection of bovine macrophages is associated with apoptosis. Infec. Immun. 70: 2121-2127.
Hanahan, D. & R. Weinberg. 2000. The hallmarks of cancer. Cell 100: 57-70.
Hayashi, T., A. Catanzaro & S. 1997. Rao Apoptosis of human monocytes and macrophages by Mycobacterium avium sonicate. Infec. Immun. 65:5262-5271.
Hernández, M. O., I. Never, J. S. Sales, et al. 2003. Induction of apoptosis in monocytes by Mycobacterium leprae in vitro: a possible role for tumour necrosis factor-a. Immunol. 109: 156-164.
Hilbi, H., A. Zychlinsky & P. J. Sansonetti. 1997. Macrophage apoptosis in microbial infections. Parasitology 115:S79-87.
Hsu, H., J. Xiong & D. V. Goeddel. 1995. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81: 495-504.
Hsu, H., H. B. Shu, M. G. Pan, et al. 1996. Tradd-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathway. Cell 84: 299-308.
Hsu, H., J. Huang, H. B. Shu, et al. 1996-b.TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4: 387-396.
Joza, N., S. A. Susin, E. Daugas, et al. 2001. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410: 549-554.
Jürgensmeier, J. M., Z. Xie, Q. Deveraux, et al. 1998. Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci. USA 95: 4997-5002.
Keane, J., Balcewick-Sablinska, M. K., H. G. Remold, et al. 1997. Infection by Mycobacterium tuberculosis promotes human alveolar macrophages apoptosis. Infec. Immune. 65: 298-304.
Keane, J., H. G. Remold & H. Kornfeld. 2000. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J. Immunol. 164:2016-20.
Kelekar, A. & C. B. Thompson. 1998. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 8:324-30
Kerr, J. F., A. H. Wyllie & A. R. 1972. Currie. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26: 239-257.
Kischkel, F. C., S. Hellbardt, I. Behrmann, et al. 1995. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO 14:5579.
Kremer, L., J. Estaquier, I. Wolowczuk, et al. 2000 Ineffective cellular immune response associated with T-cell apoptosis in susceptible Mycobacterium bovis BCG-infected mice. Infec. Immun. 68: 4264-4273.
Laochumroonvorapong, P., S. Paul, K. B. Elkon, et al. 1996. H2O2 induces monocyte apoptosis and reduces viability of Mycobacterium avium-M. intracellulare within cultured human monocytes. Infec. Immun. 64: 452-459.
Li, H., H. Zhu, C. J. Xu, et al. 1998. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491-501.
Li, P., D. Nijhawan, I. Budihardjo, et al. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479-89.
Lin, Y., A. Devin, Y. Rodriguez, et al. 1999. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13: 2514.
López, M., L. M. Sly, Y. Luu, et al. 2003. The 19-kDa Mycobacterium tuberculosis protein induces macrophages apoptosis though Toll-Like receptor-2. J. Immunol. 170: 2409-2416.
MacFarlane, M. & A. C. Williams. 2004. Apoptosis and disease: a life or death decision. EMBO reports 7: 674-678.
Maiti, D., A. Bhattacharyya & J. Basu. 2001. Lipoarabinomannan from Mycobacterium tuberculosis promotes macrophages survival by phosphorylating Bad through a phosphatidylinositol 3-Kinase/Akt pathway. J. Biol. Chem. 276: 329-333.
Martin, D. A., R. M. Siegel, L. Zheng, et al. 1998. Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHalpha1) death signal. J. Biol. Chem. 273: 4345-9.
Means, K. T., B. W. Jones, A. B. Schromm, et al. 2001. Differential effects of a Toll-Like receptor antagonist on Mycobacterium tuberculosis-induced macrophages responses. J. Immunol. 166: 4074-4082.
Mogga, S. J., T. Mustafa, L. Sviland, et al. 2002. Increased Bcl-2 and reduced Bax expression in infected macrophages in slowly progressive primary murine Mycobacterium tuberculosis infection. Scand. J. Immunol. 56: 383-391.
Molloy. A., P. Laochumroonvorapong, G. Kaplan. 1994. Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guerin. J. Exp. Med. 180: 1499-1509.
Mustafa, T., G. Bjune, R. Jonsson, et al. 2001. Increased expression of Fas ligand in human tuberculosis and leprosy lesions: a potential novel mechanism of immune evasion in Mycobacterial infection. Scand. J. Immunol. 54: 630-639.
Muro, M., T. Koseki, S. Akifusa, et al. 1997. Role of CD14 molecules in internalization of Actinobacillus actinomycetemcomitans by macrophages and subsequent induction of apoptosis. Infec. Immnun. 65: 1147-1151.
Murray P. R., E. J. Barron, M. A. Pfaller, et al. 2003. Mycobacterium: General characteristics, islation, and staining procedures. In G. E. Pfyffer, B. A. Brown-Elliott & R. J. Wallace (Eds). Manual of Clinical Microbiology, American Society for Microbiology. Washington D.C.
Muzio, M., A. M. Chinnaiyan, F. C. Kischkel, et al. 1996. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85: 817-827.
Myers A.J., B. Eilertson, S.A. Fulton, et al. 2005. The purinergic P2X7 receptor is not required for control of pulmonary Mycobacterium tuberculosis infection. Infect. Immun. 73: 3192-3195.
Nguyen, M., D. G. Millar, V. W. Yong, et al. 1993. Targeting of Bcl-2 to the mitochondrial outer membrane by a COOH-terminal signal anchor sequence. J. Biol. Chem. 268: 25265-8.
Oddo, M., T. Renno, A. Attinger, et al. 1998. Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J. Immunol. 160: 5448-54.
Orrenius, S., B. Zhivotovsky & P. Nicotera. 2003. Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4:552-65
Orth, K., K. O’Rourke, G. S. Salvesen, et al. 1996. Molecular ordering of apoptotic mammalian CED-3/ICE-like proteases. J. Biol. Chem. 271: 20977.
Orth, K., A. M. Chinnaiyan, M. Garg, et al. 1996. The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J. Biol. Chem. 271: 16443.
Pan, H., B.S. Yan, M. Rojas, et al. 2005. Ipr1 gene mediates innate immunity to tuberculosis. Nature. 434: 767-772.
Perskvist, N., M. Long, O. Stendahl, et al. 2002. Mycobacterium tuberculosis promotes apoptosis in human neutrophils by activating caspase-3 and altering expression of Bax/Bcl-xL via an oxygen-dependent pathway. J. Immunol. 12: 6358-6365.
Peter, M. E. & P. H. Krammer. 1998. Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr. Opin. Immunol. 10: 545
Placido, R., G. Mancino, A. Amándola, et al. 1997. Apoptosis of human monocytes/macrophages in Mycobacterium tuberculosis infection. J. Pathol. 181: 31-38.
Quesniaux, V., C. Fremond, M. Jacobs, et al. 2004. Toll-like receptor pathways in the immune responses to mycobacteria. Microbes. Infect. 6:946-59.
Ragno, S., I. Estrada-García, R. Butler, et al. 1998. Regulation of macrophage gene expression by Mycobacterium tuberculosis: down-regulation of mitochondrial cytochome c oxidase. Infec. Immun. 66: 3952-3958.
Rao, L., D. Perez & E. White. 1996. Lamin proteolysis facilitates nuclear events during apoptosis. J. Cell Biol. 135:1441.
Reed, J. C. 1994. Bcl-2 and the regulation of programmed cell death. J. Cell Biol. 124:1-6.
Riendeau, C. J. & H. Kornfeld. 2003. THP-1 cell apoptosis in response to Mycobacterial infection. Infec. Immun. 71: 254-259.
Rojas, M., L. F. Barrera & L. F. Garcia. 1998. Induction of apoptosis in murine macrophages by Mycobacterium tuberculosis is reactive oxygen intermediates-independent. Biochem. Biophys. Res. Commun. 247: 436-42.
Rojas, M, M. Olivier, P. Gros P, et al. 1999. TNF-alpha and IL-10 modulate the induction of apoptosis by virulent Mycobacterium tuberculosis in murine macrophages. J. Immunol.162: 6122-6131.
Rojas, M., L. F. García, J. Nigou, et al. 2000. Mannosylated lipoarabinomannan antagonizes Mycobacterium tuberculosis- induced macrophages apoptosis by altering Ca+2-dependent cell signaling. J. Infect. Dis. 182:240-51.
Rojas, M., M. Olivier & L. F. Garcia. 2002. Activation of JAK2/STAT1-alpha-dependent signaling events during Mycobacterium tuberculosis-induced macrophage apoptosis. Cell Immunol. 217: 58-66.
Santucci, M. B., M. Amicosante, R. Cicconi, et al. 2000. Mycobacterium tuberculosis-induced apoptosis in monocytes/Macrophages: early membrane modifications and intracellular mycobacterial viability. J. Infec. Dis. 181: 1506-9.
Scaffidi, C., S. Fulda, A. Srinivasan, et al. 1998. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17:1675.
Schaible, U. E., F. Winau, P. A. Sieling, et al. 2003. Apoptosis facilitates antigen presentation to T limphocytes through MHC-I and in tuberculosis. Nature Medicine. 8:1039-1045.
Seah, G., & G. A. Rook. 2001. IL-4 influences apoptosis of Mycobacterium-reactive lymphocytes in the presence of TNF-a. J. Immunol. 167:1230-1237.
Shi, Y. 2002. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9: 459-470.
Sly, L. M., M. Hingley-Wilson, N. E. Reiner, et al. 2003. Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Bcl-2 family member Mcl-1. J. Immunol. 170: 430-437.
Stanger, B. Z., P. Leder, T. H. Lee, et al. 1995. A novel protein containing a death domain that interacts with Fas/APO1 (CD95) in yeast and causes cell death. Cell 81: 513-523.
Stroh, C. & K. Schulze-Osthoff. 1998. Death by a thousand cuts: an ever increasing list of caspase sutrate. Cell Death Differ. 5: 997-1000.
Sturgill-Koszycki, S., P. H. Schlesinger, P. Chakraborty, et al. 1994. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263: 678-81.
Takahashi, A., E. S. Alnemri & Y. A. Lazebnik. 1996. Cleavage of lamin A by Mch2 alpha but not CPP32: Multiple interleukin 1b-converting enzyme-related proteases with distinct substrate recognition properties are in apoptosis. Proc. Natl. Acad. Sci. USA 93: 8395.
Tanaka, S., K. Saito & J. C. Reed. 1993. Structure-function analysis of the Bcl-2 oncoprotein. Addition of a heterologous transmembrane domain to portions of the Bcl-2 beta protein restores function as a regulator of cell survival. J. Biol. Chem. 268: 10920-6.
Tewari, M., L. T. Quan, K. O’Rourke, et al. 1995. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81: 801-809.
Vega-Manriquez, X., Y. López-Vidal, J. Moran, et al. 2007. Apoptosis-inducing factor participation in bovine macrophage Mycobacterium bovis-induced caspase independent cell death. Infec. Immun. 75: 1223-1228.
Verhagen, A. M., P. G. Ekert, M. Pakusch, et al. 2000. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43-53.
Via, L. E., D. Deretic, R. J. Ulmer, et al. 1997. Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J. Biol. Chem. 272: 13326-31.
Vincenz, C., & V. M. Dixit. 1997. Fas-associated death domain protein interleukin-1beta-converting enzyme 2 (FLICE2), an ICE/Ced-3 homologue, is proximally involved in CD95- and p55-mediated death signaling. J. Biol. Chem. 272:6578-6583.
Watson, V. E., L. L. Hill, L. B. Owen-Schaub, et al. 2000. Apoptosis in Mycobacterium tuberculosis infection in mice exhibiting varied immunopathology. J. Pathol. 190:211-220.
Winau, F., S. H. Kaufmann, U. E. Schaible. 2004. Apoptosis paves the detour path for CD8T cell activation against intracellular bacteria. Cell Microbiol. 6: 599-607.