2008, Número 1-2
<< Anterior Siguiente >>
Microbiología 2008; 50 (1-2)
Producción del ácido indol-3-acético en Azospirillum
Aguilar-Piedras JJ, Xiqui-Vásquez ML, García-García S, Baca BE
Idioma: Español
Referencias bibliográficas: 60
Paginas: 29-37
Archivo PDF: 158.01 Kb.
RESUMEN
Azospirillum es una bacteria fijadora de nitrógeno de vida libre, aislada de la rizósfera y del espacio intracelular de la raíz de varias plantas. Muchos reportes han mostrado un mejoramiento del crecimiento de la planta y la producción de granos por la inoculación de
Azospirillum a la planta. La respuesta observada se ha atribuido a varios mecanismos que pudieran operar simultáneamente entre ellos: la producción por la bacteria del ácido indol-3-acético (IAA). En esta revisión analizaremos la compleja biosíntesis de IAA en
Azospirillum. Se han propuesto en
Azospirillum tres vías de síntesis dependientes de tr iptófano (Trp) anotadas de acuerdo al intermediario de la vía. La ruta del ácido-3-indol pirúvico (IPyA), considerada la más importante, la vía de la triptamina y la ruta del indol-3-acetonitrilo. Una vía independiente del Trp, que emplearía un precursor indólico del Trp; sin embargo ninguna de ellas está completamente dilucidada. Estudios bioquímicos mostraron actividad enzimática de dos aromático aminotransferasas (AATs) en
A. brasilense y cuatro en
A. lipoferum, las cuales podrían estar involucradas en la síntesis del
IPyA. En varias cepas se identificó el gene ipdC que codifica para la enzima clave de la vía del IPyA, la fenil piruvato descarboxilasa (PPDC). De manera interesante, ipdC de A. brasilense Sp245 es sobre expresado en presencia de IAA, y todos los genes
ipdC identificados son expresados en asociación con la planta.
La enzima antranilato sintetasa codificada por el gene trpE(G) convierte el corismato en ácido antranílico, ésta es la primera reacción de la síntesis del
Trp, existen dos copias del gene en el genoma de
A. brasilense. Se demostró que ambos participan en la síntesis de IAA y que son regulados diferentemente. Por lo tanto,
A. brasilense cuenta con una poza de Trp suficiente para la síntesis de IAA. Otras proteínas afectan la producción de IAA entre ellas: la proteína de estrés ClpX, así como una de membrana externa y una proteína que participa en el transporte de Fe
+3.
REFERENCIAS (EN ESTE ARTÍCULO)
Baca, EB., L. Soto-Urzúa, YG. Xochihua & A. Cuervo. 1994. Characterization of aromatic amino acid aminotransferases and production of indolacetic acid in Azospirillum strains. Soil Biol. Biochem: 57-63.
Barbieri, P., T. Zanelli, E. Galli & G. Zanetti. 1986. Wheat inoculation with Azospirillum brasilense Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid production. FEMS Microbiol. Lett.36: 87-90.
Bashan, Y. 1990. Short exposure to Azospirillum brasilense Cd inoculation enhanced proton efflux of intact wheat roots. Can. J. Microbiol. 36:419-425.
Bashan, Y., G. Holguin & LE. de-Bashan. 2004. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can. J. Microbiol. 50:521-577.
Bottini, R., M. Fulchieri, D. Pearce & RP. Pharis. 1989. Identification of gibberilins A1, A3 and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol. 90:45-47.
Brandl, M. & SE. Lindow. 1996. Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Appl. Environ. Microbiol. 62:4121-4128.
Carcaño-Montiel, MG., R. Ferrera-Cerrato, J. Pérez-Moreno, J D. Molina-Galán, & Y. Bashan. 2006. Actividad nitrogenasa, producción de fitohormonas, sideróforos y antibiosis en cepas de Azospirillum y Klebsiella aisladas de maíz y teocintle. Terra Latinoam. 24:493-502.
Carreño-López, R., NB. Campos-Reales, C. Elmerich & BE. Baca. 2000. Physiological evidence for differently regulated tryptophan-dependent pathways for indole-3-acetic acid synthesis in Azospirillum brasilense. Mol. Gen. Genet. 264: 521-530.
Comai, L. & T. Kosuge. 1980. Involvement of a plasmid deoxyribonucleic acid in indoleacetic acid synthesis in Pseudomonas savastanoi. J. Bacteriol. 143: 950-957.
Comai, L. & T. Kosuge. 1982. Cloning and characterization of iaaM, a virulence determinant of Pseudomonas savastanoi. J. Bacteriol. 149: 40-46.
Costacurta, A., V. Keijers & J. Vanderleyden. 1994. Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Mol. Gen. Genet. 243: 463-472.
Crozier, AP., JM. Arruda, A. Jazmín, M. Monteiro & G. Sandberg. 1988. Analysis of indole-3-acetic acid and related indoles in culture medium from Azospirillum lipoferum and Azospirillum brasilense. Appl. Environ. Microbiol. 54: 2833-2837.
Dobbelaere, S. et al. 2001. Responses of agronomically important crops to inoculation with Azospirillum. Aust. J. Plant Physiol. 28: 871-879.
Fallik, E., Y. Okon, YE. Epstein, A. Goldman & M. Fisher. 1989. Identification and quantification of IAA and IBA in Azospirillum brasilense inoculated maize roots. Soil Biol. Biochem. 21:147-153.
Follin, A., D. Inzé, F. Budar, C. Genetello, M. Van Montagu & J. Schell. 1985. Genetic evidence that the tryptophan 2-monooxygenase gene of Pseudomonas savastanoi is functionally equivalent to one of the T-DNA genes involved in plant tumor formation by Agrobacterium tumefaciens. Mol. Gen. Genet. 201: 178-185.
Gardan, LC., ME. David, M. Morel, EL. Glickmann, A. Abu-Ghorrah & Y. Dessaux. 1992. Evidence for a correlation between auxin production and host plant species among strains of Pseudomonas syringae subsp. savastanoi Appl. Environ. Microbiol. 58: 1780-1783.
Ge, SM., BE. Xie & SF. Chen. 2006. Characterization of two trpE genes encoding anthranilate syntase a-subunit in Azospirillum brasilense. Biochem. Biophys. Res. Commun. 341:494-499.
Glass, NL. & T. Kosuge. 1988. Role of indoleacetic acid-lysine synthetase in regulation of indoleacetic acid pool size and virulence in Pseudomonas syringae subsp savastanoi. J. Bacteriol. 170: 2367-2373.
Glickmann, EL., S. Gardan, S. Jacquet, M. Hussain, A. Elasri & Y. Dessaux. 1998. Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol. Plant-Microbe Interact. 11: 156-162.
Hartmann, A., M. Singh & W. Klingmüller. 1983. Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Can. J. Microbiol. 29: 916-923.
Hutcheson, SW. & T. Kosuge. 1985. Regulation of 3-indoleacetic acid production in Pseudomonas syringae pv. savastanoi. J. Biol. Chem. 260: 6281-6287.
Inzé, D., A. Follin, M. Van Lijsebettens, C. Simoens, C. Genetello, M. Van Montagu & J. Schell. 1984. Genetic analysis of the individual T-DNA of Agrobacterium tumefaciens, further evidence that two genes are involved in indole-3-acetic acid synthesis. Mol. Gen. Genet., 194 265-274.
Itzigsohn, R. & Y. Okon. 1995. The development of Azospirillum as a commercial inoculant for improving crop yields. Biotechnol. Adv. 13:415-424.
Jensen, R.A. & W. Gu. 1996. Evolutionary recruitment of biochemical specialized subdivisions of family I within the protein superfamily of aminotransferases. J. Bacteriol. 178:2161-2171.
Katzy, EI., AD. Iosipenko, DA. Egorenko, EA. Zhuravleva, VI. Panasenko & VV. Ignatov. 1990. Involvement of Azospirillum brasilense plasmid DNA in the production of indole acetic acid. FEMS Microbiol. Lett. 72: 1-4.
Kobayashi, M., T., Suzuki, T. Fujita, M. Masuda & S. Shimizu. 1995. Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant associated bacteria, Agrobacterium and Rhizobium. Proc. Natl. Acad. Sci. U.S.A. 92: 714-718.
Koga, J. T. Adachi & H. Hidaka. 1991. Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacters cloacae. Mol. Gen. Genet. 226:10-16.
Lee, C.W. & M. J. Desmazeaud. 1995. Utilization of aromatic amino acids as nitrogen sources in Brevibacterium linens: an inducible aromatic amino transferase. Arch. Microbiol. 140:331-337.
Martínez-Morales, LJ., L. Soto-Urzúa, BE. Baca & JA. Sánchez-Ahédo. 2003. Indole-3-butyric acid (IBA) production in culture medium by wild-type Azospirillum brasilense. FEMS Microbiol.Lett. 228:170-173.
Mehnaz, SB., G. Weselowski & G. Lazarovits. 2007. Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from rhizosphere. Int. J. Syst. Evol. Microbiol. 57:620-624.
Morris, RO. 1986. Genes specifying auxin and citokinin biosynthesis in pathogens. Ann. Rev. Plant Physiol. 37: 509-538.
Okon Y., R. Itzigsohn, S. Burdman & M. Hampel. 1995. Advances in agronomy and ecology of the Azospirillum/plant association, In Tikhonovich, IA., NA. Provorov, VI. Romanov and WE. Newton (Eds.); Nitrogen fixation: fundamentals and applications pp.635-640. The Netherlands Kluwer Academic Publishers.
Okon, Y. & Y. Kalpunik. 1986. Development and function of Azospirillum –inoculated roots. Plant Soil. 90:3-16.
Omay, SH., WA. Schmidt, P. Martin & F. Bangerth. 1993. Indoleacetic acid production by the rhizosphere bacterium Azospirillum brasilense Cd under in vitro conditions. Can. J. Microbiol. 39: 187-192.
Ona, O., JV. Impe, E. Prinse & J. Vanderleyden. 2005. Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmental controlled. FEMS Microbiol. Let. 246:125-132.
Peng. GH., G. Wang, W. Zhang, Y. Hou, E. Liu, T. Wang & Z. Tan. 2006. Azospirillum melinis sp. nov., a group of diazotroph isolated from tropical molasses grass. Int. J. Syst. Evol. Microbiol. 56:1263-1271.
Prinsen, E., A. Costacurta, K. Michiels, J. Vanderleyden & H. Van Onckelen. 1993. Azospirillum brasilense indole-3-acetic acid biosynthesis, evidence for a non tryptophan dependent pathway. Mol. Plant-Microbe Interact. 6: 609-615.
Pedrasa, RO., A. Ramírez Mata, ML. Xiqui. & BE. Baca. 2004. Aromatic amino acid aminotransferase activity and índole-3-acetic acid production by associate nitrogen-fixing bacteria. FEMS Microbiol. Let. 233:15-21.
Rodríguez, H., A. Mendoza, MA. Cruz, G. Holguin, BG. Glick & Y. Bashan. 2006. Pleiotropic physiological effects in the plant growth-promoting bacterium Azospirillum brasilense following chromosomal labeling in the clpX gene. FEMS Microbiol. Ecol. 57:217-225.
Rothballer, M., M. Schmid, A. Fekete & A. Hartmann. 2005 Comparative in situ analysis of ipdC-gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245. Environ. Microbiol. 7:1839-1846.
Ruckdäschel, E., B. Lewis-Kittell, DR. Helinski & W. Klingmüller. 1988. Aromatic amino acid aminotransferase of Azospirillum lipoferum and their possible involvement in IAA biosynthesis. In Azospirillum IV, Genetics, Physiology, Ecology. W. Klingmüller (Ed.), pp 49-53. Springer-Verlag. The Netherlands.
Ruckdäschel, E. & W. Klingmüller. 1992. Analysis of IAA biosynthesis in Azospirillum lipoferum and Tn5 induced mutants. Symbiosis 13:123-132.
Schröeder, G., S. Waffenschmid, EW. Weiler & J. Schröeder. 1984. The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur. J. Biochem. 138:387-391.
Sommers, E. D. Ptacek, P. Gysegom, M. Srinivasan & J. Vanderleyden. 2005. Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indol-3-acetic acid biosynthesis. Appl. Environ. Microbiol. 71:1803-1810.
Soto-Urzúa, L., YG. Xochihua-Corona, M. Flores-Encarnación & BE. Baca. 1996. Purification and properties of aromatic amino acid aminotransferase from Azospirillum brasilense UAP 14 strain. Can. J. Microbiol. 42: 294-298.
De Troch, PF., S. Dosselaere, V. Keijers, P. de Wilde & J. Vanderleyden. 1997. Isolation and characterization of the Azospirillum brasilense trpE(G) gene, encoding anthranilate synthase. Curr. Microbiol. 34:27-32.
Thomashow, LS., S. Reeves & MF. Thomashow. 1984. Crown gall oncogenesis, evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc. Natl. Acad. Sci. U.S.A. 81: 5071-5075.
Tien, TM., MH. Gaskins & DH. Hubbell. 1979. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of Pearl Millet (Pennisetum americanum L.). Appl. Environ. Microbiol. 37: 1016-1024.
Vande-Broek, A., P. Gysegom, O. Ona, N. Hendrickx, E. Prinsen, J. Van Impe & J. Vanderleyden. 2005. Transcriptional analysis of the Azospirillum brasilense indol-3-pyruvate decarboxylase gene and identification of a cis-acting sequence involved in auxin responsive expression. MPMI. 14:311-323.
Vande-Broek, A., M. Lambrecht, K. Eggermont & J. Vanderleyden. 1999. Auxin upregulate expression of the indole-3-pyruvate decarboxylase gene. J. Bacteriol. 181:1338-1342.
Van Onckelen, et al. 1986. Agrobacterium T-DNA gene1 codes for a tryptophan 2-monooxygenase activity in tobacco crown gall cells. FEBS Lett. 198: 357-360.
Versées, W., S. Spaenpen, J. Vanderleyden & J. Steyaert. 2007. The crystal structure of phenyl pyruvate decarboxylase from Azospirillum brasilense at 1.5Å resolution implications for its catalytic and regulatory mechanism. FEBS J. 274:2363-2375.
Woodward, A. & B. Bartel. 2005. Auxin: Regulation, action, and interaction. Annals Botany. 95:707-735.
Xie, B., K. Xu, HX. Zhao & SF. Chen. 2005. Isolation of transposon mutants from Azospirillum brasilense Yu62 and characterization of genes involved in indole-3-acetic acid biosynthesis. FEMS Microbiol. Let. 248:57-63.
Xie, CH. & A. Yakota. 2005. Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int. J. Syst. Evol. Microbiol. 55:1435-1438.
Yagi, K., T. Chujo, H. Nojiri, T. Omori, M. Nishiyama & H. Yamane. 2001. Evidence for the presence of DNA-binding proteins involved in regulation of the gene expression of indole-3-pyruvic acid decarboxylase, a key enzyme in indole-3-actic acid biosynthesis in Azospirillum lipoferum. Biosc. Biotechnol. Biochem. 65: 1265-1269.
Yamada, T., CJ. Palm, B. Brooks & T. Kosuge. 1985. Nucleotide sequences of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proc. Natl. Acad. Sci. U.S.A. 82: 6522-6526.
Zakharova, EA., AD. Iosipenko & VV. Ignatov. 2000. Effect of water soluble vitamins on the production of indole-3-acetic acid in Azospirillum brasilense. Microbial Res. 155:572-576.
Zimmer, W., C. Aparicio & C. Elmerich. 1991. Relationship between tryptophan biosynthesis and indole-3-acetic acid production in Azospirillum, identification and sequencing of a trpGDC cluster. Mol. Gen. Genet. 229: 41-51.
Zimmer, W., M. Wesche & L. Timmermans. 1998. Identification and isolation of the indole-3-pyruvate decarboxylase gene from Azospirillum brasilense Sp7, sequencing and functional analysis of the gene locus. Curr. Microbiol. 36, 327-33.